Skip to content
Snippets Groups Projects
integer_programming.ipynb 66.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "7ee10bd7-40c0-49aa-b66a-664c8fa5bbf5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Der eigentliche LP/(M)IP-Solver \"Gurobi\"\n",
    "import gurobipy as grb\n",
    "\n",
    "# Eine Menge nützlicher Routinen zu Iteratoren (erlaubt z.B. Iteration über alle Kombinationen)\n",
    "import itertools\n",
    "\n",
    "# Graphen\n",
    "import networkx as nx\n",
    "from networkx.classes.graphviews import subgraph_view\n",
    "\n",
    "# Generation von zufälligen Zahlen für Instanzen/Punktmengen\n",
    "import random\n",
    "\n",
    "# Fürs Wurzelziehen\n",
    "import math\n",
    "\n",
    "# Fürs Zeichnen (hier von Graphen, kann aber auch Daten visualisieren)\n",
    "import matplotlib\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "98e49156-6a70-4eb4-9f45-e1f9cf1d85aa",
   "metadata": {},
   "source": [
    "## Hilfsroutinen\n",
    "Zur Generierung von Instanzen und Erzeugung/Sortierung der Kantenmenge."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "16d94ecd-1448-4172-9bed-9f7d0cfd21c2",
   "metadata": {},
   "outputs": [],
   "source": [
    "def random_points(n, w=10_000, h=10_000):\n",
    "    \"\"\"\n",
    "    n zufällige Punkte mit ganzzahligen Koordinaten in einem w * h-Rechteck.\n",
    "    :param n: Anzahl der Punkte\n",
    "    :param w: Breite des Rechtecks.\n",
    "    :param h: Höhe des Rechtecks.\n",
    "    :return: Eine Liste von Punkten als (x,y)-Tupel.\n",
    "    \"\"\"\n",
    "    return [(random.randint(0,w), random.randint(0,h)) for _ in range(n)]\n",
    "\n",
    "def squared_distance(p1, p2):\n",
    "    \"\"\"\n",
    "    Berechne die (quadrierte) euklidische Distanz zwischen Punkten p1 und p2.\n",
    "    \"\"\"\n",
    "    return (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2\n",
    "\n",
    "def all_edges(points):\n",
    "    \"\"\"\n",
    "    Erzeuge eine Liste aller Kanten zwischen den\n",
    "    gegebenen Punkten und sortiere sie (aufsteigend) nach Länge.\n",
    "    \"\"\"\n",
    "    edges = [(v,w) for v, w in itertools.combinations(points, 2)]\n",
    "    edges.sort(key=lambda p: squared_distance(*p))  # *p ist hier wie p[0], p[1]\n",
    "    return edges\n",
    "\n",
    "def filter_edges(edges, max_sq_length):\n",
    "    return [e for e in edges if squared_distance(*e) <= max_sq_length]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a8dcce0a-3b70-4862-b53e-da059cc5ac29",
   "metadata": {},
   "source": [
    "## Zeichnen von Lösungen"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f436c90b-a091-49e4-8c80-aa6bdd929024",
   "metadata": {},
   "outputs": [],
   "source": [
    "def draw_edges(edges):\n",
    "    \"\"\"\n",
    "    Malt eine gegebene Liste von Kanten als Graph.\n",
    "    Die längste Kante wird dabei hervorgehoben (rot, dicker) dargestellt.\n",
    "    \"\"\"\n",
    "    points = set([e[0] for e in edges] + [e[1] for e in edges])\n",
    "    draw_graph = nx.empty_graph()\n",
    "    draw_graph.add_nodes_from(points)\n",
    "    draw_graph.add_edges_from(edges)\n",
    "    g_edges = draw_graph.edges()\n",
    "    max_length = max((squared_distance(*e) for e in g_edges))\n",
    "    color = [('red' if squared_distance(*e) == max_length else 'black') for e in g_edges]\n",
    "    width = [(1.0 if squared_distance(*e) == max_length else 0.5) for e in g_edges]\n",
    "    plt.clf()\n",
    "    fig, ax = plt.gcf(), plt.gca()\n",
    "    fig.set_size_inches(7,7)\n",
    "    ax.set_aspect(1.0)\n",
    "    nx.draw_networkx(draw_graph, pos={p: p for p in points}, node_size=8,\n",
    "                     with_labels=False, edgelist=g_edges, edge_color=color, width=width, ax=ax)\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea3eb541-29f5-41ad-b1da-b5bc3b3b8fe9",
   "metadata": {},
   "source": [
    "## Greedy-Heuristik\n",
    "Genau wie bei SAT."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ce48e10e-4a97-4396-864a-3e7efaa4a8fa",
   "metadata": {},
   "outputs": [],
   "source": [
    "class GreedyDBST:\n",
    "    \"\"\"\n",
    "    Löse Degree-Constrained Bottleneck Spanning Tree mit einer Greedy-Heuristik.\n",
    "    Geht durch die (aufsteigend nach Länge sortierte) Liste der möglichen Kanten,\n",
    "    und fügt eine Kante ein, wenn das vom Grad her noch geht und die Endpunkte\n",
    "    noch nicht in derselben Zusammenhangskomponente sind (im Prinzip wie Kruskal).\n",
    "    \"\"\"\n",
    "    def __init__(self, points, degree):\n",
    "        self.points = points\n",
    "        self.all_edges = all_edges(points)\n",
    "        self._component_of = {v: v for v in points}\n",
    "        self.degree = degree\n",
    "        \n",
    "    def __component_root(self, v):\n",
    "        cof = self._component_of[v]\n",
    "        if cof != v:\n",
    "            cof = self.__component_root(cof)\n",
    "            self._component_of[v] = cof\n",
    "        return cof\n",
    "        \n",
    "    def __merge_if_not_same_component(self, v, w):\n",
    "        cv = self.__component_root(v)\n",
    "        cw = self.__component_root(w)\n",
    "        if cv != cw:\n",
    "            self._component_of[cw] = cv\n",
    "            return True\n",
    "        return False\n",
    "    \n",
    "    def solve(self):\n",
    "        edges = []\n",
    "        degree = {v: 0 for v in self.points}\n",
    "        n = len(self.points)\n",
    "        m = 0\n",
    "        for v,w in self.all_edges:\n",
    "            if degree[v] < self.degree and degree[w] < self.degree:\n",
    "                if self.__merge_if_not_same_component(v,w):\n",
    "                    edges.append((v,w))\n",
    "                    degree[v] += 1\n",
    "                    degree[w] += 1\n",
    "                    m += 1\n",
    "                    if m == n-1:\n",
    "                        self.max_sq_length = squared_distance(v,w)\n",
    "                        print(f\"Bottleneck bei Greedy: {math.sqrt(self.max_sq_length)}\")\n",
    "                        break\n",
    "        return edges"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "84d4ae29-bade-4b66-b9cd-15a39971b340",
   "metadata": {},
   "source": [
    "## Eigentlicher Solver"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e55fe5d3-2098-4e71-a393-bab221a4bc6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "class DBSTSolverIP:\n",
    "    def __make_vars(self):\n",
    "        # Erzeuge binäre Variablen (vtype=grb.GRB.BINARY) für die Kanten\n",
    "        self.bnvars = {e: self.model_bottleneck.addVar(lb=0, ub=1, vtype=grb.GRB.BINARY)\n",
    "                       for e in self.all_edges}\n",
    "        # Erzeuge eine nicht ganzzahlige Variable (vtype=grb.GRB.CONTINUOUS) fürs Bottleneck\n",
    "        self.l = self.model_bottleneck.addVar(lb=0,\n",
    "                                              ub=squared_distance(*self.all_edges[-1]),\n",
    "                                              vtype=grb.GRB.CONTINUOUS)\n",
    "        \n",
    "    def __add_degree_bounds(self, model, varmap):\n",
    "        for v in self.points:\n",
    "            edgevars = 0\n",
    "            for e in self.edges_of[v]:\n",
    "                if e in varmap:\n",
    "                    edgevars += varmap[e]\n",
    "            model.addConstr(edgevars >= 1)\n",
    "            model.addConstr(edgevars <= self.degree)\n",
    "            \n",
    "    def __add_total_edges(self, model, varmap):\n",
    "        model.addConstr(sum(varmap.values()) == len(self.points)-1)\n",
    "\n",
    "    def __make_edges(self):\n",
    "        edges_of = {p: [] for p in self.points}\n",
    "        for e in self.all_edges:\n",
    "            edges_of[e[0]].append(e)\n",
    "            edges_of[e[1]].append(e)\n",
    "        return edges_of\n",
    "    \n",
    "    def __add_bottleneck_constraints(self):\n",
    "        for e, x_e in self.bnvars.items():\n",
    "            self.model_bottleneck.addConstr(self.l >= squared_distance(*e) * x_e)\n",
    "    \n",
    "    def __get_integral_solution(self, model, varmap):\n",
    "        \"\"\"\n",
    "        Bestimmt den Graph, der durch die aktuelle ganzzahlige Zwischenlösung gebildet wird.\n",
    "        \"\"\"\n",
    "        variables = [x_e for e, x_e in varmap.items()]\n",
    "        values = model.cbGetSolution(variables)\n",
    "        graph = nx.empty_graph()\n",
    "        graph.add_nodes_from(self.points)\n",
    "        for i, (e, x_e) in enumerate(varmap.items()):\n",
    "            # x_e = v in der aktuellen Lösung\n",
    "            v = values[i]\n",
    "            if v >= 0.5:  # die Werte sind nicht unbedingt immer exakt genau 0 oder 1 (Numerik)\n",
    "                graph.add_edge(e[0], e[1])\n",
    "        return graph\n",
    "    \n",
    "    def __forbid_component(self, model, varmap, component):\n",
    "        \"\"\"\n",
    "        Verbiete die Komponente component, indem erzwungen wird,\n",
    "        dass wenigstens eine Kante über den Rand der Komponente gewählt werden muss.\n",
    "        \"\"\"\n",
    "        crossing_edges = 0\n",
    "        for v in component:\n",
    "            for e in self.edges_of[v]:\n",
    "                if e in varmap:\n",
    "                    target = e[0] if e[0] != v else e[1]\n",
    "                    if target not in component:\n",
    "                        crossing_edges += varmap[e]\n",
    "        # Das eigentliche Constraint wird statt mit addConstr über cbLazy eingefügt.\n",
    "        model.cbLazy(crossing_edges >= 1)\n",
    "    \n",
    "    def __callback_integral(self, model, varmap):\n",
    "        # Hier müssen wir überprüfen, ob die Lösung zusammenhängend ist.\n",
    "        # Falls das nicht der Fall ist, müssen wir zusätzliche Bedingungen hinzufügen,\n",
    "        # die die aktuelle Lösung verbieten.\n",
    "        graph = self.__get_integral_solution(model, varmap)\n",
    "        for component in nx.connected_components(graph):\n",
    "            if len(component) == len(self.points):\n",
    "                # Die Komponente enthält alle Knoten,\n",
    "                # der Graph ist also zusammenhängend\n",
    "                return\n",
    "            self.__forbid_component(model, varmap, component)\n",
    "\n",
    "    def __callback_fractional(self, model, varmap):\n",
    "        # hier müssen wir streng genommen nichts tun;\n",
    "        # es gibt allerdings Dinge die wir tun können,\n",
    "        # die die Suche beschleunigen können.\n",
    "        # Die aktuelle Lösung erhalten wir über die Methode\n",
    "        # model.cbGetNodeRel(Liste der Variablen).\n",
    "        # Sie kann nicht-ganzzahlige Werte für die Variablen enthalten,\n",
    "        # die eigentlich ganzzahlig sein sollten.\n",
    "        pass\n",
    "\n",
    "    def callback(self, where, model, varmap):\n",
    "        if where == grb.GRB.Callback.MIPSOL:\n",
    "            # wir haben eine ganzzahlige Zwischenlösung\n",
    "            self.__callback_integral(model, varmap)\n",
    "        elif where == grb.GRB.Callback.MIPNODE and \\\n",
    "             model.cbGet(grb.GRB.Callback.MIPNODE_STATUS) == grb.GRB.OPTIMAL:\n",
    "            # wir haben eine nicht-ganzzahlige Zwischenlösung\n",
    "            self.__callback_fractional(model, varmap)\n",
    "\n",
    "    def __init__(self, points, edges, degree):\n",
    "        self.points = points\n",
    "        self.all_edges = edges\n",
    "        self.degree = degree\n",
    "        self.edges_of = self.__make_edges()\n",
    "        self.model_bottleneck = grb.Model()  # Das IP-Modell für das min Bottleneck\n",
    "        self.model_minsum = grb.Model()\n",
    "        self.remaining_edges = None\n",
    "        self.msvars = None\n",
    "        self.__make_vars()\n",
    "        self.__add_degree_bounds(self.model_bottleneck, self.bnvars)\n",
    "        self.__add_total_edges(self.model_bottleneck, self.bnvars)\n",
    "        self.__add_bottleneck_constraints()\n",
    "        # Wir müssen vorher ankündigen, dass wir Lazy Constraints nutzen.\n",
    "        # Sonst macht der Solver möglicherweise Optimierungen, die nur zulässig sind,\n",
    "        # wenn er alle Constraints vorher kennt, und wir bekommen eine Exception.\n",
    "        self.model_bottleneck.Params.lazyConstraints = 1\n",
    "        # Setze die Zielfunktion\n",
    "        self.model_bottleneck.setObjective(self.l, grb.GRB.MINIMIZE)\n",
    "    \n",
    "    def __init_minsum_model(self):\n",
    "        # Erzeuge binäre Variablen (vtype=grb.GRB.BINARY) für die Kanten\n",
    "        self.msvars = {e: self.model_minsum.addVar(lb=0, ub=1, vtype=grb.GRB.BINARY)\n",
    "                       for e in self.remaining_edges}\n",
    "        self.__add_degree_bounds(self.model_minsum, self.msvars)\n",
    "        self.__add_total_edges(self.model_minsum, self.msvars)\n",
    "        self.model_minsum.Params.lazyConstraints = 1\n",
    "        obj = sum((math.sqrt(squared_distance(*e)) * x_e for e, x_e in self.msvars.items()))\n",
    "        self.model_minsum.setObjective(obj, grb.GRB.MINIMIZE)\n",
    "    \n",
    "    def __solve_bottleneck(self):\n",
    "        # Finde optimales Bottleneck\n",
    "        cb_bn = lambda model, where: self.callback(where, model, self.bnvars)\n",
    "        self.model_bottleneck.optimize(cb_bn)\n",
    "        if self.model_bottleneck.status != grb.GRB.OPTIMAL:\n",
    "            raise RuntimeError(\"Unerwarteter Status nach Optimierung!\")\n",
    "        sqlen = int(round(self.model_bottleneck.objVal))\n",
    "        print(f\"Optimales Bottleneck: {math.sqrt(sqlen)}\")\n",
    "        self.remaining_edges = filter_edges(self.all_edges, sqlen)\n",
    "        self.__init_minsum_model()\n",
    "        \n",
    "    def __solve_minsum(self):\n",
    "        # Finde optimalen Baum\n",
    "        cb_ms = lambda model, where: self.callback(where, model, self.msvars)\n",
    "        self.model_minsum.optimize(cb_ms)\n",
    "        if self.model_bottleneck.status != grb.GRB.OPTIMAL:\n",
    "            raise RuntimeError(\"Unerwarteter Status nach Optimierung!\")\n",
    "        # Gib alle Kanten mit Wert >= 0.5 zurück\n",
    "        # (es gibt numerische Gründe für >= 0.5 statt == 1)\n",
    "        return [e for e, x_e in self.msvars.items() if x_e.x >= 0.5]\n",
    "    \n",
    "    def solve(self):\n",
    "        self.__solve_bottleneck()\n",
    "        return self.__solve_minsum()\n",
    "\n",
    "        \n",
    "def solve(points, degree):\n",
    "    greedy = GreedyDBST(points, degree)\n",
    "    greedy_sol = greedy.solve()\n",
    "    remaining_edges = filter_edges(greedy.all_edges, greedy.max_sq_length)\n",
    "    ip = DBSTSolverIP(points, remaining_edges, degree)\n",
    "    return ip.solve()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "781aa3bb-c937-4167-ac46-3d4baeb64386",
   "metadata": {},
   "outputs": [],
   "source": [
    "points = random_points(100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "59292449-026c-409d-a002-0ede0433a892",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Bottleneck bei Greedy: 1918.5955801054063\n",
      "Changed value of parameter lazyConstraints to 1\n",
      "   Prev: 0  Min: 0  Max: 1  Default: 0\n",
      "Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (mac64)\n",
      "Thread count: 4 physical cores, 8 logical processors, using up to 8 threads\n",
      "Optimize a model with 670 rows, 470 columns and 3283 nonzeros\n",
      "Model fingerprint: 0xfa4262eb\n",
      "Variable types: 1 continuous, 469 integer (469 binary)\n",
      "Coefficient statistics:\n",
      "  Matrix range     [1e+00, 4e+06]\n",
      "  Objective range  [1e+00, 1e+00]\n",
      "  Bounds range     [1e+00, 4e+06]\n",
      "  RHS range        [1e+00, 1e+02]\n",
      "Presolve removed 479 rows and 3 columns\n",
      "Presolve time: 0.00s\n",
      "Presolved: 191 rows, 467 columns, 2315 nonzeros\n",
      "Variable types: 0 continuous, 467 integer (467 binary)\n",
      "\n",
      "Root relaxation: objective 3.681009e+06, 81 iterations, 0.00 seconds\n",
      "\n",
      "    Nodes    |    Current Node    |     Objective Bounds      |     Work\n",
      " Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time\n",
      "\n",
      "     0     0 3681009.00    0    4          - 3681009.00      -     -    0s\n",
      "     0     0 3681009.00    0   10          - 3681009.00      -     -    0s\n",
      "     0     0 3681009.00    0    6          - 3681009.00      -     -    0s\n",
      "     0     2 3681009.00    0    9          - 3681009.00      -     -    0s\n",
      "*   95    16               7    3681009.0000 3681009.00  0.00%   3.7    0s\n",
      "\n",
      "Cutting planes:\n",
      "  Lazy constraints: 212\n",
      "\n",
      "Explored 160 nodes (792 simplex iterations) in 0.21 seconds\n",
      "Thread count was 8 (of 8 available processors)\n",
      "\n",
      "Solution count 1: 3.68101e+06 \n",
      "\n",
      "Optimal solution found (tolerance 1.00e-04)\n",
      "Best objective 3.681009000000e+06, best bound 3.681009000000e+06, gap 0.0000%\n",
      "\n",
      "User-callback calls 513, time in user-callback 0.10 sec\n",
      "Optimales Bottleneck: 1918.5955801054063\n",
      "Changed value of parameter lazyConstraints to 1\n",
      "   Prev: 0  Min: 0  Max: 1  Default: 0\n",
      "Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (mac64)\n",
      "Thread count: 4 physical cores, 8 logical processors, using up to 8 threads\n",
      "Optimize a model with 201 rows, 469 columns and 2345 nonzeros\n",
      "Model fingerprint: 0x70c3c96d\n",
      "Variable types: 0 continuous, 469 integer (469 binary)\n",
      "Coefficient statistics:\n",
      "  Matrix range     [1e+00, 1e+00]\n",
      "  Objective range  [7e+01, 2e+03]\n",
      "  Bounds range     [1e+00, 1e+00]\n",
      "  RHS range        [1e+00, 1e+02]\n",
      "Presolve removed 10 rows and 2 columns\n",
      "Presolve time: 0.00s\n",
      "Presolved: 191 rows, 467 columns, 2315 nonzeros\n",
      "Variable types: 0 continuous, 467 integer (467 binary)\n",
      "\n",
      "Root relaxation: objective 5.972984e+04, 43 iterations, 0.00 seconds\n",
      "\n",
      "    Nodes    |    Current Node    |     Objective Bounds      |     Work\n",
      " Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time\n",
      "\n",
      "     0     0 61746.6735    0    4          - 61746.6735      -     -    0s\n",
      "     0     0 62518.5506    0   31          - 62518.5506      -     -    0s\n",
      "     0     0 63093.9798    0   18          - 63093.9798      -     -    0s\n",
      "     0     0 63101.1671    0   24          - 63101.1671      -     -    0s\n",
      "     0     0 63163.7378    0   24          - 63163.7378      -     -    0s\n",
      "     0     0 63229.2871    0   22          - 63229.2871      -     -    0s\n",
      "     0     0 63416.3201    0   29          - 63416.3201      -     -    0s\n",
      "     0     0 63477.7205    0   24          - 63477.7205      -     -    0s\n",
      "     0     0 63477.7205    0   24          - 63477.7205      -     -    0s\n",
      "     0     2 63477.7205    0   24          - 63477.7205      -     -    0s\n",
      " 13989 11783 66129.3988   36   22          - 65705.9009      -   7.5    5s\n",
      " 32481 28680 66830.5284   50   24          - 65818.3099      -   7.1   10s\n",
      "*47132 34865             176    68988.462661 65877.2869  4.51%   6.9   14s\n",
      "*47304 32206             163    68665.783639 65878.7705  4.06%   6.9   14s\n",
      " 47724 32436 66672.7919   44   36 68665.7836 65879.3386  4.06%   6.9   15s\n",
      "H52126 34290                    68519.316465 65924.1302  3.79%   6.9   18s\n",
      " 55615 37343 68002.5391  112   17 68519.3165 65954.6783  3.74%   6.8   20s\n",
      "*61582 41868             145    68504.459351 65997.3165  3.66%   6.8   21s\n",
      "*64851 43648             162    68460.083559 66014.3888  3.57%   6.8   23s\n",
      "*66873 40569             162    68235.596512 66023.3597  3.24%   6.8   23s\n",
      " 69484 42547 68118.4221   85   10 68235.5965 66036.0005  3.22%   6.8   25s\n",
      " 80057 50350 67721.8180   59   26 68235.5965 66077.6498  3.16%   6.9   30s\n",
      "*84611 51830             153    68175.720226 66093.4232  3.05%   6.9   31s\n",
      "H85401 48076                    68024.408069 66095.3386  2.84%   6.9   32s\n",
      "H85403 43207                    67863.666742 66095.3386  2.61%   6.9   32s\n",
      " 89897 46152 66396.3244   48   30 67863.6667 66110.6463  2.58%   7.1   35s\n",
      " 101144 53573 66674.3675   43   33 67863.6667 66151.7900  2.52%   7.2   40s\n",
      " 110719 59620 66641.0387   38   28 67863.6667 66182.7708  2.48%   7.4   45s\n",
      " 120936 66190 67846.4741   70   30 67863.6667 66207.1812  2.44%   7.5   50s\n",
      " 130741 72428 66884.7414   44   33 67863.6667 66227.6028  2.41%   7.6   55s\n",
      " 139537 77646 66725.4563   49   29 67863.6667 66245.4110  2.38%   7.6   60s\n",
      " 149414 84093 66286.9973   42   20 67863.6667 66263.1922  2.36%   7.7   65s\n",
      " 159746 90710 66859.3623   48   29 67863.6667 66281.2011  2.33%   7.7   70s\n",
      " 170741 97553 67802.2334   68   16 67863.6667 66297.6467  2.31%   7.8   75s\n",
      " 179778 103229 67474.5691   53   23 67863.6667 66310.6496  2.29%   7.8   80s\n",
      " 187823 108012     cutoff   61      67863.6667 66323.1588  2.27%   7.9   85s\n",
      " 198472 114680 67837.5683   74   18 67863.6667 66338.2120  2.25%   7.9   90s\n",
      " 207922 120352 67180.5998   62   34 67863.6667 66348.5893  2.23%   7.9   95s\n",
      " 218108 126631 67788.3817   56   24 67863.6667 66360.4202  2.22%   8.0  100s\n",
      " 228110 132784 67425.9132   57   22 67863.6667 66372.4288  2.20%   8.0  105s\n",
      " 237391 138090 67842.7904   62   28 67863.6667 66382.3153  2.18%   8.0  110s\n",
      " 247774 144560     cutoff   56      67863.6667 66392.0133  2.17%   8.0  115s\n",
      " 258668 150698 66860.2231   46   37 67863.6667 66402.2850  2.15%   8.0  120s\n",
      " 268963 156934 66858.6619   49   24 67863.6667 66411.0660  2.14%   8.1  125s\n",
      " 279521 163328 67780.4331   71   27 67863.6667 66420.3515  2.13%   8.1  130s\n",
      " 289048 169074 67837.7662   92   10 67863.6667 66427.5097  2.12%   8.1  135s\n",
      " 298862 174454 66719.2552   46   25 67863.6667 66436.3046  2.10%   8.1  140s\n",
      " 309177 180282 66870.6044   51   30 67863.6667 66445.1786  2.09%   8.1  145s\n",
      " 319370 186203 67192.0818   47   25 67863.6667 66453.0699  2.08%   8.1  150s\n",
      " 328341 191606 66948.6978   52   30 67863.6667 66459.5273  2.07%   8.1  155s\n",
      " 337895 197335 67252.2607   51   27 67863.6667 66466.8054  2.06%   8.1  160s\n",
      " 345957 202051 67796.8851   61   22 67863.6667 66472.1832  2.05%   8.2  165s\n",
      " 354162 206418 67119.2330   53   26 67863.6667 66477.3105  2.04%   8.2  170s\n",
      " 364558 212426     cutoff   76      67863.6667 66484.5359  2.03%   8.2  175s\n",
      " 373702 217764 67003.8116   42   37 67863.6667 66490.1937  2.02%   8.2  180s\n",
      " 383966 223351 67862.3428   59   29 67863.6667 66496.0227  2.02%   8.2  185s\n",
      " 393657 228974 66641.1384   42   33 67863.6667 66501.9187  2.01%   8.2  190s\n",
      " 403303 234511 67798.8709   61   21 67863.6667 66507.1843  2.00%   8.2  195s\n",
      " 412405 240051     cutoff   53      67863.6667 66511.9182  1.99%   8.2  200s\n",
      " 423565 246087 67304.7863   53   26 67863.6667 66518.9137  1.98%   8.2  205s\n",
      " 431540 250764 67730.8589   61   16 67863.6667 66522.8526  1.98%   8.2  210s\n",
      " 441903 256546 67734.5477   58   28 67863.6667 66528.7026  1.97%   8.3  215s\n",
      " 451784 262173 66779.8146   47   22 67863.6667 66533.7323  1.96%   8.3  220s\n",
      " 461370 267737 66941.8361   48   22 67863.6667 66539.0286  1.95%   8.3  225s\n",
      " 469062 272112 67785.3625   58   28 67863.6667 66542.3430  1.95%   8.3  230s\n",
      " 477718 276589     cutoff   60      67863.6667 66546.6307  1.94%   8.3  235s\n",
      " 488051 282223 67313.5073   47   24 67863.6667 66551.8927  1.93%   8.3  240s\n",
      " 497544 287387 66921.2946   48   33 67863.6667 66556.4581  1.93%   8.3  245s\n",
      " 508203 293158 67796.4045  101    8 67863.6667 66561.3618  1.92%   8.3  250s\n",
      " 518393 298716 67248.8757   54   24 67863.6667 66565.9799  1.91%   8.3  255s\n",
      " 529108 304600 67615.4199   80   19 67863.6667 66570.6083  1.91%   8.3  260s\n",
      "H535464 297079                    67784.689665 66573.3974  1.79%   8.3  262s\n",
      " 538815 299063 67695.9477   59   28 67784.6897 66574.8928  1.78%   8.3  265s\n",
      " 550140 304731 67667.0679   73   16 67784.6897 66579.7281  1.78%   8.3  270s\n",
      " 559806 309622     cutoff   59      67784.6897 66583.8284  1.77%   8.3  275s\n",
      " 568609 314341 67496.4582   64   16 67784.6897 66587.6917  1.77%   8.3  280s\n",
      " 579343 319661 67165.2797   44   22 67784.6897 66591.9865  1.76%   8.3  285s\n",
      " 586782 323612 67606.9428   50   24 67784.6897 66594.6446  1.76%   8.3  290s\n",
      " 596539 328515 66776.9128   37   37 67784.6897 66598.6566  1.75%   8.3  295s\n",
      " 605886 333228 67494.9097   50   34 67784.6897 66602.0400  1.74%   8.4  300s\n",
      " 614208 337523 67098.5197   57   34 67784.6897 66605.3128  1.74%   8.4  305s\n",
      " 624352 342496 67765.1763   64   25 67784.6897 66609.5331  1.73%   8.4  310s\n",
      " 632726 346275 66996.8894   45   24 67784.6897 66612.3531  1.73%   8.4  315s\n",
      " 641769 351496 67432.0755   53   28 67784.6897 66615.8808  1.72%   8.4  320s\n",
      " 650441 355747 67421.2660   57   27 67784.6897 66619.0160  1.72%   8.4  325s\n",
      " 659373 360028 67597.3593   54   29 67784.6897 66622.2971  1.71%   8.4  330s\n",
      " 669447 364873 66645.5133   49   32 67784.6897 66625.7582  1.71%   8.4  335s\n",
      " 678667 369480 67397.4325   69   17 67784.6897 66629.1211  1.70%   8.4  340s\n",
      " 688461 374183     cutoff   69      67784.6897 66632.5108  1.70%   8.4  345s\n",
      " 698414 379143 67452.6379   49   16 67784.6897 66635.7282  1.70%   8.4  350s\n",
      " 707177 383254 67392.0473   58   30 67784.6897 66638.6710  1.69%   8.4  355s\n",
      " 717031 388218 67627.5640   57   21 67784.6897 66641.7969  1.69%   8.4  360s\n",
      " 726812 392990 67127.1787   44   29 67784.6897 66644.7668  1.68%   8.4  365s\n",
      " 734957 396990 66884.4227   51   27 67784.6897 66647.3006  1.68%   8.4  370s\n",
      " 745094 401944 66861.8459   43   26 67784.6897 66650.4592  1.67%   8.4  375s\n",
      " 754690 406460 67644.8363   50   28 67784.6897 66653.2871  1.67%   8.4  380s\n",
      " 763596 410586 66875.1284   53   30 67784.6897 66655.8379  1.67%   8.4  385s\n",
      " 771708 414403 67778.0212   77    - 67784.6897 66657.9596  1.66%   8.4  390s\n",
      " 781389 419259 67485.2281   57   22 67784.6897 66661.0186  1.66%   8.4  395s\n",
      " 790444 423901 66860.8818   43   24 67784.6897 66663.3930  1.65%   8.4  400s\n",
      " 800128 428516 67462.7277   65   25 67784.6897 66666.4175  1.65%   8.4  405s\n",
      " 809103 432946 67417.2201   65   30 67784.6897 66668.8959  1.65%   8.4  410s\n",
      " 819067 437572 67317.8637   48   30 67784.6897 66671.5111  1.64%   8.4  415s\n",
      " 828144 441808 67465.8577   48   28 67784.6897 66674.1792  1.64%   8.4  420s\n",
      " 837387 446188     cutoff   57      67784.6897 66676.7831  1.63%   8.4  425s\n",
      " 847111 450722 67049.1391   65   31 67784.6897 66679.3620  1.63%   8.4  430s\n",
      " 856121 454368 67568.8117   59   37 67784.6897 66681.6587  1.63%   8.4  435s\n",
      " 863981 458543 66794.3141   44   24 67784.6897 66683.6780  1.62%   8.4  440s\n",
      " 871516 462498 67240.8740   50   35 67784.6897 66685.6293  1.62%   8.4  445s\n",
      " 880488 466848 66954.9609   49   34 67784.6897 66688.0161  1.62%   8.4  450s\n",
      " 889393 470976     cutoff   74      67784.6897 66690.2413  1.61%   8.4  455s\n",
      " 898165 475313 67555.6473   54   20 67784.6897 66692.6947  1.61%   8.4  460s\n",
      " 906586 479062 67534.8714   48   28 67784.6897 66694.7366  1.61%   8.4  465s\n",
      " 915749 483082     cutoff   69      67784.6897 66697.0031  1.60%   8.4  470s\n",
      " 926078 488205 67070.9066   49   24 67784.6897 66699.5702  1.60%   8.4  475s\n",
      " 935253 492198 67725.6254   66   20 67784.6897 66701.7236  1.60%   8.4  480s\n",
      " 945325 497051     cutoff   60      67784.6897 66704.1504  1.59%   8.4  485s\n",
      " 954390 501068     cutoff   61      67784.6897 66706.3393  1.59%   8.4  490s\n",
      " 962248 504946 67614.3996   55   21 67784.6897 66708.2850  1.59%   8.4  495s\n",
      " 971715 509358 66957.9452   54   40 67784.6897 66710.2605  1.59%   8.4  500s\n",
      " 980848 513606 66926.3920   50   33 67784.6897 66712.1928  1.58%   8.5  505s\n",
      " 990919 518203 66930.8350   64   18 67784.6897 66714.4064  1.58%   8.5  510s\n",
      " 999655 522451 67583.7692   54   30 67784.6897 66716.3361  1.58%   8.5  515s\n",
      " 1009960 527254 66779.5980   53   22 67784.6897 66718.7894  1.57%   8.5  520s\n",
      " 1018714 531257 67604.9369   49   28 67784.6897 66720.6244  1.57%   8.5  525s\n",
      " 1029256 536217 67575.8578   67   23 67784.6897 66722.9874  1.57%   8.5  530s\n",
      " 1038070 540212 67484.0551   49   25 67784.6897 66725.1376  1.56%   8.5  535s\n",
      " 1046963 544279 67557.8589   50   27 67784.6897 66727.0296  1.56%   8.5  540s\n",
      " 1056617 548652 67705.4197   50   28 67784.6897 66729.1094  1.56%   8.5  545s\n",
      " 1065680 553031 67442.4064   46   33 67784.6897 66730.9509  1.55%   8.5  550s\n",
      " 1075906 556911 67617.4918   57   17 67784.6897 66732.9121  1.55%   8.5  555s\n",
      " 1083686 560542 67501.4524   44   22 67784.6897 66734.6312  1.55%   8.5  560s\n",
      " 1092550 564611 66972.3803   46   26 67784.6897 66736.4920  1.55%   8.5  565s\n",
      " 1101138 568463 66879.7430   49   42 67784.6897 66738.3822  1.54%   8.5  570s\n",
      " 1111415 573316 67757.5137   51   31 67784.6897 66740.5307  1.54%   8.5  575s\n",
      " 1121516 577410 67420.7498   57   36 67784.6897 66742.5390  1.54%   8.5  580s\n",
      " 1129342 581389 67103.7967   52   30 67784.6897 66744.1504  1.54%   8.5  585s\n",
      " 1139868 586028 infeasible   81      67784.6897 66746.1716  1.53%   8.5  590s\n",
      " 1148934 590174 67319.3366   56   25 67784.6897 66748.1318  1.53%   8.5  595s\n",
      " 1158192 594272     cutoff   58      67784.6897 66750.0772  1.53%   8.5  600s\n",
      " 1168133 598734 67513.6080   53   38 67784.6897 66751.7291  1.52%   8.5  605s\n",
      " 1177001 602595 66990.5419   45   30 67784.6897 66753.5064  1.52%   8.5  610s\n",
      " 1187346 607029 67154.9855   49   28 67784.6897 66755.5167  1.52%   8.5  615s\n",
      " 1195292 610720 67130.1296   44   25 67784.6897 66756.9031  1.52%   8.5  620s\n",
      " 1203615 614689 67354.3427   49   21 67784.6897 66758.4882  1.51%   8.5  625s\n",
      " 1213052 618807 67417.4784   47   24 67784.6897 66760.1294  1.51%   8.5  630s\n",
      " 1222255 622795 67751.0029   48   23 67784.6897 66761.9021  1.51%   8.5  635s\n",
      " 1231486 626723 67480.8947   42   27 67784.6897 66763.5594  1.51%   8.5  640s\n",
      " 1241709 631329     cutoff   58      67784.6897 66765.4754  1.50%   8.5  645s\n",
      " 1250954 635429 67023.0770   52   22 67784.6897 66767.0901  1.50%   8.5  650s\n",
      " 1260949 639600 67598.1456   56   20 67784.6897 66768.9355  1.50%   8.5  655s\n",
      " 1270337 643781 67534.4962   54   25 67784.6897 66770.5326  1.50%   8.5  660s\n",
      " 1279183 647704 67473.1291   52   24 67784.6897 66772.1859  1.49%   8.5  665s\n",
      " 1287942 651570     cutoff   50      67784.6897 66773.7986  1.49%   8.5  670s\n",
      "\n",
      "Cutting planes:\n",
      "  Gomory: 8\n",
      "  MIR: 27\n",
      "  Flow cover: 27\n",
      "  Zero half: 62\n",
      "  Lazy constraints: 2825\n",
      "\n",
      "Explored 1289942 nodes (10940722 simplex iterations) in 671.10 seconds\n",
      "Thread count was 8 (of 8 available processors)\n",
      "\n",
      "Solution count 10: 67784.7 67863.7 68024.4 ... 68988.5\n",
      "\n",
      "Solve interrupted\n",
      "Best objective 6.778468966455e+04, best bound 6.677416308379e+04, gap 1.4908%\n",
      "\n",
      "User-callback calls 2603210, time in user-callback 10.39 sec\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAGRCAYAAACg1F5qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdUFOcaBvBntlEEFAQUKyJqEERFsGKJvRF7jzG2FGOMmgSVIkUjEbFFTbHEEoO9xWg01iTEhhUbFhB7WUGRBWTb3D8IXLuU3f1mdt/fOTn3JmFnnuDuvvN1jud5EEIIIaUhYR2AEEKI+FExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqcmK88POzs68u7u7kaIQQggRmhMnTjzked7lbT9XrGLi7u6O48ePlzwVIYQQUeE47npRfo66uQghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRMzl6pUYV3iDaQqVayjEELMWLG2oCfikqpUofvCBOj1PABg/YiG8KnuComEniEIEZpUpQqJaRkIcHeCh4sd6zjFRsXEjCWmZYDngadaPeScHvPjd6C67jZ4nn/u5579e57nYW1tjbJly772L3t7e0ilUlP/5xBitgoe/Hge4Djg97GBoisoVEzMWIC7EzgOsJFLwXFShH40oEhv0KdPnyIzM/O5v65cuVL4/7OysqDX6597DcdxzxUluVz+xoLk4OAAmaz4bz+xP70R8irH0jKg1mig5SWwkUuRmJYhuvc3FRMz5uFih9/HBhb7y9fa2hrW1taoUKFCie+tVqtfKkjXrl0r/P9PnjyBTqd75WsLipJMJnuuAOXK7BF5JA9AfvFaOegdeFZwgFwuh0KhgFwuL3aLiYoTYU2r1eLwtl8glTSAhOeh1+sQ4O7EOlaxUTExcx4udky+JBUKBVxcXODi8tajo19Lo9E8V4y2n08Hz+uh1nOQczqs2JGAutaPoVarodFooFarX2oxvUmm3grbNd6QyWSQSCSi7Fog4qZSqRAaGooxY8bgC6fKOJaWgT2//gD38l1YRys2KiZEsORyOZydneHs7AwAKFdVhXVXEyDlAY6T4usPe5Xqy39d4g3s2n4euRo9rOW8KLsWiHjduXMH33zzDSIiIuDq6gog/+GvmiYI69atw6BBgxgnLB4qJkQ0Stpt9zr5Y0ocbOQSqNVq+FaiQkJM4+zZs1i+fDni4uJgY2Pz3L9r3rw5Nm3ahD59+kChUDBKWHzcizN73sTf358/fvy4EeMQYloFYyZVbTTYsGwh4uLiaKbaC2hcybD27NmDI0eOIDQ09LXT9C9evIgDBw5gzJgxJk73Mo7jTvA87/+2n6OWCbFoz44plR01ClFRUYiKigLHcYyTCUOqUoVuCxIAiHfKqpCsWLECGo0G4eHhb/w5Ly8vrF69Gk+ePIGDg4OJ0pUOrV4j5D/e3t5o3749vvvuO9ZRBCMxLQM6nQ65Gh14Pv/vSfHp9XrExMTAxcUFo0ePLtJrxowZg++//97IyQyHigkhz2jVqhWqVKmC+Ph41lEEIcDdCTKZFAoJD61WI8opq6w9ffoUwcHB6NSpE7p161bk11WuXBk6nQ737t0zYjrDoWJCyAv69OmDJ0+eYM+ePayjMFcw6WFaT1+Mq5ODo3u3s44kKunp6fjyyy/xxRdfwM/Pr9iv/+yzz7Bo0SIjJDM80RYT2sCQGNMnn3yCI0eO4NSpU6yjMOfhYocBAdXw+bAByMvLw5YtW1hHEoWrV68iMjISMTExqFq1aomuUa5cObi4uODy5csGTmd4oiwmqUoVui/4B5G/nUf3hQlUUIhRhIaGIj4+HmlpaayjCMaHH36Ie/fu4Y8//mAdRdAOHTqEn3/+GXPmzCn1APpHH32EJUuWGCiZ8YiymCSmZYDXapGr1YPneRoUJEYhkUjwzTffIC4uDunp6azjCMann36K5ORkHDx4kHUUQdq4cSOOHj2Kb775BnK5vNTXs7a2hq+vL44dO2aAdMYjymIS4O4ETi6HjV4DTq2mQUFiNAqFAjNmzMDUqVORm5vLOo5gTJgwAYcOHcKRI0dYRxGEVKUKaxNvIGrOD9DpdJgwYYJBp5cPHjwY8fHxL+34LSSiLCYFg4KR3evi971x8Ni2lnUkYsYcHBwQGhqKKVOmvHZzSks0ZcoU/PHHHxY/rpTf7Z6A0M2nEZ9RDQFtiz5jq6ikUik6duyI3bt3G/zahiLKYgL8NyjYsjY8fl0KhIQAhw+zjkTMWKVKlfDxxx8jMjJS0E+HpsRxHCIiIrB+/XpcvHiRdRxmEtMyoNProIMUEonUaN3uXbp0wa5du4q1makpibaYFKpTB/j5Z6BfP+DOHdZpiBnz8vJC586dMX/+fNZRBEMikWD69OlYtmwZUlJSWMdhIsDdCVKp9L9zg2C0bneO4wq7u4RI/MUEALp3Bz75BOjbF8jLY52GmLEWLVrA3d0dq1evZh1FMKRSKWJiYrBgwQLcvHmTdRyTK+x2D6pr9O1mGjdujNOnT+Pp06dGu0dJmUcxAfK7uipWBMaNY52EmLmePXsiNzdX0P3XpiaXy/Htt98iNjZWNCu2DalgLY4p9i0T6lRh8ykmEgmwciWQkAAsXsw6DTFzo0ePxokTJ3DixAnWUQTD2toa3377LaZNm0ZTqY2odu3auH//PjIzM1lHeY75FBMAsLcHtm4FwsKAQ4dYpyFmbsqUKVi/fj1SU1NZRxGMMmXKICYmBlOnThXcl505EeI2K+ZVTACgVi1gxQoakCdGx3Ecpk+fjnnz5uHhw4es4wiGg4MDpk2bhpCQEGRnZ7OOY5bc3NzAcRzuCOg7zvyKCQB07Qp89hnQpw8NyBOjksvlhUev5uTksI4jGE5OTpg6dSomT54syMFicyC01ol5FhMAmDIFqFwZGDsWoHUBxIjs7e0RHh6OkJAQaLVa1nEEo0KFCggODsakSZOg0WhYxzE7Dg4OqFSpEpKTk1lHAWDOxYTj8ru7Dh8GfvqJdRpi5ipWrIhPP/0UERERtKjxGVWrVsW4ceMwefJk2j3ACEaNGoWlS5eyjgHAnIsJANjZ5Q/IR0Tkz/IixIjq1KmDoKAgzJkzh3UUQalZsyZGjhyJ0NBQwa7eFisrKyv4+fnhsAB2ADHvYgIAnp75U4b79wdu3WKdhpi5pk2bonbt2li5ciXrKIJSt25dDBw4EFFRUdRyM7CBAwdi7dq1zH+v5l9MAKBz5/zFjH36ADQYSIwsKCgIOp0OO3fuZB1FUBo0aIAuXbpgxowZzL/4zIlEIkG3bt2wY8cOtjmY3t2UJk0CqlfPn+VFb2RiZCNGjMDZs2eRmJjIOoqgNG3aFC1atMDcuXNZRzErHTp0wN69e5mOS1lOMeG4/A0hExOB779nnYZYgODgYGzevBlXr15lHUVQ2rRpAy8vL3xPn0OD4TgO77//PtM94yynmAD5A/JbtgDR0cDff7NOQ8wcx3GIjo7Gd999hwcPHrCOIyhdunSBm5sb4n5ahXWJN+jobQPw9/fHuXPnmB3iZlnFBABq1gRWrQIGDgQscIdTYlpyuRwzZsxAVFQUVCr6wnxW/cAOWHzdCeFbz6L7wgQqKAbw8ccfYzGjvQktr5gAQKdOwBdf0IA8MQk7OztEREQgJCSEFu89IzEtA1KZDGo9wPO80Q6VsiSenp5IT0/Ho0ePTH5vyywmABAcDNSokX8OCg3IEyNzdXXFuHHjMHXqVJrJ9J8AdydwHGAlBbRandEOlbI0Y8eOZbLNiuUWk4IB+VOngIULWachFsDT0xO9evXCrFmzkKpUWfxYQcGhUtE96qGd5hiqlFWwjmQWXF1dIZfL8e/ZqyZ9j3HFeUry9/fnjx8/bsQ4DKSmAs2aAevXA61bs05DLMDPG3cg5qQeMpkcHAejn84nBufPn8ehQ4cwevRo1lHMwtm0++j101HI5YpSv8c4jjvB87z/237OclsmBTw8gNWr8wfkb9xgnYZYgDLV6wEAcjU68DxorACAt7c3TqXcwS+HUiy6tWYoF5R54GHa9xgVEwDo0AGYOBHo3RtgNK2OWI4AdyfIZDJIoQPHgcYKAKQqVdgvD0D07xdoZpcB1LDTgwNgI5ea7D1GxaTAV1/lH6z18cc0IE+MysPFDjs+bwl/7hq2fNzE4ru4gPwnZ46TQMNLqLVmAH9uWo0NIxshMqiuybpRqZgU4Dhg2TIgKQn47jvWaYiZ83Cxw4T3muD8kQOsowhCwcwuaq2V3qNHj8DzPBp6VsaAgGome1ihYvIsW9v8FfIxMcAB+pAT42rSpAmOHj3KOoYgFMzsaiK9ThMSSmnJkiUYNWqUye9LxeRFNWrkD8gPHgxcv846DTFjHMehUqVKuEVHIwDILyi1ZelUSEpBpVIhKysLbm5uJr83FZNXad8+fwylVy+AzvUmRjR48GDEx8ezjkHMxPLlyzFixAgm96Zi8joTJwJeXsBHH9GAPDEaFxcXpKen0wmEpNTy8vJw584d1KhRg8n9qZi8DscBS5YA588D8+axTkPM2LvvvouDBw+yjkFEbtWqVRg6dCiz+1MxeZOCAfmZM4H9+1mnIWaqQ4cO2LNnD+sYRMS0Wi0uX76MunXrMstAxeRt3N2B+Pj8Afm0NNZpiBmSSqWwt7dnstOr0MhkMtpZuQTWr1+PAQMGMM1AxaQo2rbNP/aXBuSJkQwePBhr1qxhHYM5e3t7OvelmPR6PU6ePAl//7dun2VUVEyKavx4wMcHGDWKBuSJwbm7uyMtLc3it6e3s7NDVlYW6xiisn37dgQFBbGOQcWkyDgOWLwYuHQJmDOHdRpSBGLb5t3Pzw8nT55kHYMpapkUD8/z+Ouvv9CqVSvWUaiYFIuNTf6AfFwcsHcv6zTkDVKVKnRbkICI386LZuPAnj17YuvWraxjMEUtk+LZv38/2rVrB47jWEehYlJs1aoBa9YAQ4YA166xTkNeIzEtAzq9Dk+1etFsHGhtbQ2O45BrwTtX29nZUcukGHbs2IGuXbuyjgGAiknJtGkDhIQAPXsC2dms05BXCHB3Aq/Xw1rGiWrjwL59+2LTpk2sYzBjb29PLZMiOnLkCJo0aSKIVglAxaTkxo0DGjQARo6kAXkB8nCxQzfZOUQEeYtq40BfX18kJSWxjsEMtUyKbuPGjejbty/rGIWomJQUxwE//ghcvZo/hkIExwG5GNS4umgKSYGaNWvi6tWrrGMwQS2ToklKSoK3tzekUinrKIWomJRGwYD8nDnAn3+yTkNeINZptgMHDsTatWtZx2CCWiZF8+uvv2LIkCGsYzyHiklpVa0KrF0LDB0KpKSwTkP+k5eXB4VCwTpGiZQtWxbZ2dnQarWso5icra0tsmkc8o2uXr2KatWqCe79TcXEEFq3BsLC8lfI0wdBEFJSUlCrVi3WMUqsS5cuWLn5D1GtkzEEiUQi2halqSxfvhzDhw9nHeMlVEwMZexYoFEjYMQIGpAXgOTkZLzzzjusY5SYs4c3ZpzUI3L7BdGskyHGd+vWLTg5OcHW1pZ1lJdQMTEUjgN++CF/7UlsLOs0Fu/SpUuoXbs26xjFplarsWTJEkQsXAUAyNXoRLNOhhjf0qVLmRzJWxQy1gHMirU1sHkz0LgxUL8+0Lkz60QWKzc3V5BPb6+j1WoRHx+Pc+fOYdiwYWjXszq6zP8LUp4X1ToZYjxKpRIKhQJly5ZlHeWVqGViaFWqAOvWAcOG5U8bJuQN9Ho91q1bh0mTJsHHxwexsbHw9vaGh4sddoxrBT8+VVTrZIjxLFmyRLCtEoBaJsbRsiUwdWr+CvkjRwA7+iIwJTEM4PI8j+3bt+PAgQPo16/fK8+i8HS1R03uPtzLi6eFRYzjzLV7OJdjDxVnC1fWYV6DWibGMmYM0LgxUkePs7gZOazdu3cPbm5urGO8Es/z+PPPPzFhwgTY2dlh7ty5aN68+Wt/vlGjRha/k7ClS1Wq0HdxIk5yNQU9GYOKibFwHFKnxaF71SCEbz6DbguE+yYwN0KdyfXPP/9gwoQJ0Gg0mDt3Ltq2bfvW13To0AHrdx2kBxILFrdqKziJBE+1vKAnY1A3lxEl3lGBt7aGWqOHVKPGN4vXYdanveDkRIOpxpScnIwePXqwjoFUpQqJaRmwenILf/2+AYGBgZgzZw4kkqI/wymfctisqo3t28+D4zgaP7Ew69atg5ezHAefSCHlIejJGFRMjCjA3Qkcx8FGLgXHSTG657v48ccfkZubiyFDhgjy6dkc3L17l3k3V6pSha7f/Q2NRgupRIKdk6PgWcGh2NdJTMuAVCZFriZ/B+TEtAyzLyYcx4HnecHshsvKrl278PjxY3z+8cfo9t+DSYC7k2D//KmYGJGHix1+Hxv43JugqXcIcnJyEB8fj6VLl6JTp05o3769xX9wDI317zPh0j1oNBroOBkUMilO3HhcomIS4O4EqVQKGwkPjUaD8wd/g7r+R4LbSsOQbG1tkZOTgzJlyrCOwkSqUoU1+xKRfS0ZM6aMB5D/XSLUIlKAiomRvepNYGtri1GjRhUOxgYHB+Odd97B4MGDYWNjwygpMaSTu9dDIW8IcKU7T+XFBxLtozsIDg5Gr1690Lp1awOnFoaCo3stsZikKlXovjABeXlqWFm9g1FKleCLSAEqJgxxHIdOnTqhU6dOuHDhAmbMmAFbW1t8+OGHzLtpxConJ4d5Qd69ezda+NbCuDYtDdI18dwDiUttzJ07F+vWrcPkyZMxceJEuLoKdbJoyRQc3VuhQgXWUUwuMS0DPA/oOCm0Wp2oujWpmAhE3bp1MW3aNKSnp2PFihV4+PAh+vXrBz8/P9bRROXy5ctMt1HJyMjAvn37EPvfljrG+CLgOA4DBw5Ely5dMGfOHFSrVg3Dhw8v1sC+kBW0TCxR/jgrYCOXQK1W453yctaRisw83n1mpHz58vjyyy8RHR2N5ORkfPXVV9iyZQt0Oh3raKJw6dIlphMbYmJiMGXKFJPcq2zZsoiKikL9+vXxxRdf4MyZMya5r7EVtEwsUUG3ZmSQNzaMbITVP8wRxSJcgIqJYMnlcgwePBizZs2Cq6srQkJCsGDBAjx58oR1NEG7cuUKPD09mdx77dq16NSpExwdHU16X39/f8ybNw9HjhxBVFSU6L+ILbllAuQXlAEB1eBXqwo6deqENWvWsI5UJFRMBI7jOLRo0QIzZ85EUFAQ5s2bh8jISKSmprKOJkhqtRpWVlYmv++tW7eQnJyM9u3bm/zeACCVSvHxxx/jo48+wrRp07Bp0ybRPNG+yJJbJi9q3749UlJScO3aNdZR3oqKiYi4u7tj6tSp+PLLL7Fr1y4EBwfj77//Rooyi1ZIM6TX6xEbG4vg4GDWUeDm5obY2FiULVsWEyZMEOVDh6W3TF4UHByM2bNnC/7kTRqAFyF7e3uMGTMGOp0OyzfuwPCd+yGVySCTSi16hbRer2eyvmTJkiUYOnSooLa8b9++PQIDA7FgwQJIJBKMHTuWSYutJKhl8jwrKyt8+umnmD9/Pr788kvWcV6LWiYiJpVKYV3VBwCg1kHQ+/aYwuFzKXhYtrZJW2iXLl1CZmYmAgICTHbPorK2tsbXX3+NHj16YNKkSThw4ADrSEViZ2dHLZMXeHt7w87ODkePHmUd5bWomIhYXl4e9q9bDLlc8d+WLcLdt8fYUpUqjFh3GXsyyplsZ1WNRoMFCxZgwoQJRr9XaXh6emLu3LlQKpWYNGkS7t+/zzrSGykUCmg0GtYxBOejjz5CfHy8YFtt1M0lUmq1GpMmTULExAnQ2ZYX/L49xpaYlgEe+S008Fr8e/kePFyMO6tr3rx5GDt2LORy4a8F4DgO/fv3R+fOnTFnzhxUrlwZI0eONJu1KZaA4ziEhIRgxowZiImJYR3nJfROEiGNRoPJkydj3LhxqF69euFUQkstJEB+i0wmk8JGLgHHcTizdzNCQkKwZMkS3L171+D3S0xMhL29veg263RwcEBkZCQaNWqEL774AqdOnWId6ZXEOhPN2CpUqIDAwEBs2rSJdZSXUMtEZLRaLSZPnowxY8bAw8ODdRzBeHlTzW4AgNTUVGzcuBF3796Fg4MDunTpAl9f31IN1Ofk5OCXX37BvHnzDBXf5Pz8/FC/fn0sW7YM27Ztw8SJE+HgUPyNKInpdevWDeHh4WjSpAmqVKnCOk4hrjhPAP7+/vzx48eNGIe8iU6nw5QpUzBixAjRPRELwePHj7Fr1y4kJSVBKpWiZcuWaN26dbFnOUVERGD06NGC+iCXxr179zB37lz4+/ujb9++zHdcBoDxU2PQLGiIRXfdvklOTg4+mxyFju+PQZMa5Y36O+I47gTP8/5v/TkqJuKg1+sRGhqK999/H97e3qzjiJ5Go8G///6LgwcPIi8vD15eXujatSucnZ3f+Lo9e/bg4cOHGDRokImSms6+ffuwfft2fP7556hZsyazHKlKFTrO2Q+5XAGOg0VPd3+df5Ou4IP4C5BIJJDL5Ub9HRW1mFA3lwjwPI/w8HAMGjSIComByOVytGnTBm3atAHP80hOTsbKlSvx8OFDODs7o1u3bqhTp07hU3qqUoWDF27h6O6/8eOsaMbpjaNdu3aFa1N4nse4ceNMsjaF53ncuXMHJ0+eRFJSEs7m2EOvr45cjQ42cqmods41ptu3b2Pz5s24c+cOHjl6QS53wVOtHrL/lgSw/h2JtpikiuDkMUPgeR4RERHo06cPfH19WccxSxzHwcvLC15eXgAApVKJnTt3YuXKlbCysoJX49aIOpKHPLUaCtvmuPYw22zfc1ZWVvjqq6+QkpKCSZMmISgoCO3atTPY9XmeR1paGk6ePInz588XruquXLky/Pz80L59e9xV6dBtQQLU6jwAUoud7g4A9+/fx6ZNm3Dz5k1UqlQJvXv3RuXKlZGqVOHvhQmQQgeOE8bvSJTdXAUHyBQc7WmuzWCe5xEdHY2uXbsKclGcJXj69Cm+WbMfvyZroJfIYCOXIjKoLgYEVGMdzeh4nsemTZtw7NgxTJw4ERUrVizW6/V6Pa5cuYKTJ0/i0qVL0Ov1AIAaNWrAz88PXl5erz0xMlWpwp+nUpC0bwsWfRshiHEcU1EqldiyZQtSU1NRoUIF9O7dG9WrV3/p51KVKoR/txKRn72PWhXLGi2PWXdz5R8gwyNXozfbZjDP85gxYwY6duxIhYQha2trDO/eCuuu/gWOg0UtDOU4Dn379kXHjh0xd+5cVKxYEaNGjcL1jNyXegW0Wi0uXryIkydPIiUlBTzPQyKRoFatWvDz80P//v0hlUqLfG8PFzt80rE+DtllY9GiRRg7dqyx/jMFISMjA1u2bMGVK1fg7OyM3r17v3W2poeLHbrXdYIm4zZgxGJSVKIsJvkHyHCCauIZWmxsLFq1aoVmzZqxjmLxPFzsEOyrQ4bMCX1bNTC7B5e3cXBwQEREBE6dOoVRE0JwyKEVgPyWR1dJEhy4p5DJZPDy8kKLFi0wdOhQgy2GbN68Oa5cuYI///wTHTt2NMg1WXmxaz4zMxNbt27FxYsX4eTkhJ49e2LkyJHFumb9+vWRlJSEunXrGil10YmymBSsKQj7bgWmj/3Q7D7cs2fPRuPGjdGyZUvWUch/yknVaFK7rNm914qjYcOG6Khxwt+bT0PHyWAtk6LZe0Mx0MhdfsOGDUNERAQ8PDyYnVVTWs92zeu0OrTXHUfVclbo0aMHhg0bVuLr1q5dGxs2bDBg0pITZTEB8gtKbelDs/twz58/H76+vnj33XdZRyHP0Gg0r+3ftyRNapSHTCaDlOchkUjR2ES9AmFhYZg4cSK++eYbQS6uVKlUuHfv3nN/PXz4sHAl/xWdM/J01aGDFFZSCVr1GmGQIiyTyQSzNb1oi4k5WrRoEWrXro0OHTqwjkJeoFarRbEHl7F5uNhhx7hWCJu3HDPGjjDZw5xcLkdERAQiIiIwe/Zsk+wpplarcf/+/ecKxP3796HRaAonBBQUCzs7O1SsWBEVK1ZEnTp10Lp1a5QvX74w5/9bJvnjboYswkKZnEDFRCB++uknVKtWDV26dGEdhbwCtUz+z9PVHjW5+6jhXMak93V2dsbw4cMxa9YsTJo0qUTX0Ov1SE9Pf6kVkZWV9dKXskKhQIUKFVCxYkW4ubmhYcOGcHV1LdH74OXtfgxXhB0dHZGRkQEnJ7Zjx1RMBGDZsmVwdXVFUFAQ6yjkNahl8rz69evjzJkzaNCggUnv6+vri6tXr+KH1ZvgVCcAAe5OqOFcBllZWS+1ItLT0196PcdxcHZ2LmxFNGvWDBUrVoSdnfFbWB4udkZpyRUMwrdp08bg1y4OKiaMrVy5Eg4ODujVqxfrKOQNqGXyvI4dO2Lx4sUmLyYA0KBlR3SaewD686fBAeguP4+qZRWFBaJu3bpo27YtHB0dLWKL/Xr16iE+Pp6KiSUqmCJ47+y/cLVRoF+/fqwjkbeglsnzypUrh8zMTCb3TkzLgEwmL9xupVnQEItYRPo6Li4uePjwIesYVExMrWAgTqPRArDH7gltWEciRUAtk5c5OjoiPT0d5cuXN+l989eZweJPF32WEAbhzb8NKDCJaRnQaDTQ8BxkMplFn9kuJtQyeVmnTp3w559/mvy+BYPZkUF1zXYrpeKSSqXMpwhTMTEhvV6P47vWg+Mk9FQlMgX7wJH/8/HxwdmzZ5ncm04XfV6tWrVw9epVphmom8tEcnJyEBYWhmHDhuHTSjUtYsdjc/KEt8a6xBv0Z/YMjuMgkUig0+mKte8WMTxfX1+cOXOG6aF5VExM4O7du5g+fTrCwsLg5uYGAPSFJCKpShW2a7yxa/sFOqzpBU2aNEFiYiKaNm3KOopFq1OnDjZv3sw0A3VzGVlSUhJmzZqFWbNmFRYSIi7H0jLA80CuRgf+v4OISL62bdti3759rGNYPLlcDo1GwzSDqFsmBYNOMpkw/zN27tyJ06dPIy5o0+rRAAAgAElEQVQuziLmu5srze2LkEqlUEhpnOtFZcqUQXZ2NusYRACE+S1cRLa2tsjNzYW9vT3rKC/56aefYG1tjZCQENZRSCmd/udP/DE5EsfTHtGYySu4ubnh7t271PJmzNHREY8ePYKjoyOT+4v6cdnGxga5ubmsYzxHq9Vi6tSpqF27dqm2libCcOzYMQQEBKCmiz3NHnqNLl264I8//mAdw+L5+voiKSmJ2f1FXUxsbW2Rk5PDOkahJ0+eYOLEiRgyZAhtIW8mNmzYgL59+7KOIWienp5ISUlhHcPiFezRxYqou7mE1DK5ceMGYmNjERkZCWdnZ9ZxiAFcunQJnp6egh2TExK5XA61Wk27BDDk4uKCBw8eMLu/qD8lrFsmBXtsWT25hUO7t2L27NmwsrJilocY1qpVqxAWFsY6higEBgbi33//pRa5BRN1MWHZMinYY0ur1UKv57H763AqJGbk9u3bcHJygo2NDesootCyZUt8++23VEwYk0qlzBaRinrMhGUx+evibajVaqj1HORyOY6nPWKSgxjHzz//jJEjR7KOIRpWVlbIy8tjHcPieXp6MttWRdTFhEU3l06nw88//4wTf6yDXC6nPbbM0KNHj8DzPMqVK8c6iqjUqFED165dYx3DorEchKdurmJISEjA+vXrMWzYMIwYMaJwzITWHpiXZcuWYdSoUaxjiE6XLl2wbds2fPbZZ6yjWKw6depgy5YtTO4t6mJiqpbJzZs3sWDBAjRs2BDz588v3D3WWMdwEnYu3EpHYoYcveUOrKOITpUqVXDnzh3WMSyaQqFgtq2KqIvJg6fA0YdStFGqjPKlnpubi0WLFkGr1SIiIgJlypQx+D2IcKQqVejx/SFIJLXQfWECbehYAtbW1sjJyYGtrS3rKBaL1VEJoh0zSVWqMHT1eezNcETX+X/j6v0nBrs2z/PYuHEjwsPD0adPH0yePJkKiQVYt/8EeB7I0/G0oWMJvfvuuzh48CDrGBatbNmyePz4scnvK9pikv9B56DjpNDxekxdsBLh4eGYMWMG9u7di6ysrBJdNykpCePHj4eTkxPi4uJQo0YNwwYngnTlyhXcOn0QCgVNqiiNpk2b4vDhw6xjWDRfX18mh5aJtpvrxXOgp48dDg8XO2RnZ+PYsWNYtGgRVCoVOI6Dt7c3WrRogapVq772eunp6Zg3bx6qVq2K2bNn06pnC3L//n0sWLAA82bPxs3HeTSpohRkMhl0Oh2dTMmQr68vNmzYgJYtW5r0vqL9xiw4B/rFD36ZMmXw7rvvFi6e0uv1OH/+PHbs2IFbt24ByN/ltEWLFrBz88CxtAxcO7oH6vRbmDBhApyc6GnUkqhUKkRFRSE2NhZyuRweLnIqIqVUt25dJCcnw8vLi3UUi1ShQgUm26qItpgARZtNJZFIUK9ePdSrV6/wn925cwfb9h/G7HU3oNfzUCgqY+e4QXByoi8RS6LRaBASEoLIyEjY2dGfvaF06tQJq1evpmLCEM/zJr+naMdMSqNSpUpwqhMAuVwBvURGg60WiOd5TJ06FePGjYOrqyvrOGbFxcUFDx8+ZB3DokkkEuh0OtPe06R3E5D/j7lIoNNpabDVwsyaNQu9evWCp6cn6yhmyd7eHpmZmaxjWCxPT0+kpqaa9J4WW0wKxlwig7wx1OU2OJWSdSRiIj///DN8fHzQuHFj1lHMVocOHbB3717WMSyWr68vzpw5Y9J7WmwxAfILyoCAavjyo6H4+eefWcchJrB9+3ZIJBJ07dqVdRSz1rBhQ5w6dYp1DIvl5eWFixcvmvSeFl1MCtjZ2cHBwYG2gjBzR44cQXJyMj788EPWUcyeRJL/1aLX6xknsUwKhQJqtdqk96Ri8p9Ro0Zh6dKlrGMQI7l8+TJ+++03fPXVV6yjWIwqXn6I23IIqUoV6ygW6QlvjXWJN0z2+6di8h9HR0dIpVKahWJCqUqVSd7s9+/fx6JFixAdHU0L6UwkVanCvGQbLDnxCN0XJlBBMbFUpQo7dPUQuf28yX7/VEyeMXr0aCxZsoR1DItQcFJl5PYLRn2zZ2VlITo6GjNmzKBdDUwoMS0DWq0WGl5CU+8ZSEzLAM/zyNXoTfb7p2LyDFdXV+Tl5dGURhP4/5tdZ7Q3u0ajQWhoKCIjI2mjThOr51YGAE/7nDGiuZsMqVRq0t8/Paq9YNSoUVi2bBkmTpzIOopZy1/nw0HO8UZZ58PzPMLCwvDFF1/AxcXFoNcmb3fwt3VY0qc1HvD2tM+Ziel0OiTu24E/wqbjeNojk/3+qZi8oEqVKkhPT6czGYzs2b3Vzh7YiofXXOHhYrh1H7GxsejXrx9q1qxpsGuSolGr1bhx4wbGjPFmHcUirVixAsOHD0dNF3vUdLE32X2pm+sVhg8fjuXLl7OOYfYK1vlM+/pzbNq0CWlpaQa57rJly+Dr6wt/f3+DXI8Uzy+//IL333+fdQyL9OTJE6SkpKBBgwYmvzcVk1fw9PTEjRs3TD5P21JxHIdp06YhLi6u1If6/Pbbb5DL5ejSpYuB0pHi0Gq1SE5Oho+PD+soFmnBggX4/PPPmdybislrDB06FL/88gvrGBZDoVAgOjoa4eHhJT7D+vDhw7hy5Qo++OADA6cjRbVu3ToMHDiQdQyLdO3aNVhbW8PNzY3J/amYvIaPjw+Sk5Oh1WpLfA1TraMwF05OThg/fjymTp1a7C20L126hN9//50mTjCk1+tx6tQpNGrUiHUUi/T9999jzJgxzO5PA/Bv0L9/f3z/y0ZU8GlepBkRGo0Gd+/exe3bt3E65Q7mXFCAByCVSLD5o8bwrkazit6mZs2aCAoKwvz58zF+/PgivebevXv44YcfEBcXR4sSGdqyZQt69erFOoZFSkhIQKNGjWBjY8MsAxWTNyjv7oX5m+5Ace08AGBupwpA1gPcuXMHd+/ehUajee4JWi6Xw83NDZUrV0aOXSVIpY/xVKuHhAdm/rwJ1bS3YGVlhSZNmqB58+Z0INNrNG/eHLdv38aGDRvQr1+/N/5sVlYWpk2bhlmzZtGiRIZ4nse///6LOXPmsI5icfR6PTZs2IB58+YxzUGfvjdITMuAVCpFrkYPGfTYl5SGXvUrwsvLC25ublAoFK99bW2lCstOJRQuGor87H14uNjh6dOnOHbsGBYsWICcnBzI5XI0adIk/xhhKi6F+vXrh7lz5+Lw4cNo1qzZK39GrVYjJCQEUVFRNI2bsT/++IN2YmYkPj4egwYNYt4qp2LyBvkL6yRQSPSQyeT4tO+7RV7887oz6q2trdGqVSu0atUKAJCXl4djx45h4cKFUKlUUCgUCAgIQGBgIJRPuZdeb0nGjx+PkJAQVKhQAR4eHs/9O57nER4ejgkTJsDZ2ZlRQgLk/1ns3bsXs2fPZh3F4py/ocTWsw8Q26kn6yjgijPQ6e/vzx8/ftyIcYQn4cxlrNt/HBPef88kX+h5eXlITEzEjr8Tsf5JTchkMkilEvw+NtAiC4pGo8GECRMwbdo0ODo6Fv7zmJgYdOzYkQZ7BWD//v3Izs5GUFAQ6ygWJVWpQsc5ByCTSSGRGO87guO4EzzPv3XRFs3megu/WlVQRX3TZF/kVlZWCAwMRIMOfaBQyJGn4y16ozy5XI7p06cjPDwcl+48wrrEG/h20c/w8/OjQiIQO3bsQPfu3VnHsDhr9x0HxwFPtcL4jqBurrewtbVFTk6Oye9bsHeVjNOD5zmL3iivXLly6D9yLLp+9w+kUgnAu2JX/xasYxHkr+1p2rQp8/56S/PgwQOkJe6F3C4QMh6C2EyTiolAFYy5/HXxNs7t3woPF8se3LyrtYVMJkWeDrCRS5GYlmGR3X5Cs2nTJsycOZN1DIui1WoRHR2N2TExghpXpWIiYB4udvBwqYOpe7ORnZ1t0duoB7g75W+pLRHGUxgBTp06BV9fX0ilUtZRLEpsbCw+++wz2Nvbw94ezItIARozEYH3338fq1evZh2DqYKWWmRQXYudjFAcpth9Yc2aNRg0aJDRrk9etm3bNtSuXRteXl6so7yEWiYiULt2bSxevBg8z1t033R+S42KyNsUnGKp0WgKZ/nUqljWoPe4cOECatWqBblcbtDrkte7cuUKTp8+jYiICNZRXolaJkUghC/wDh06YM+ePaxjEBHIP8UShUfmhi9YidDQUOzatavEm2i+aNWqVbShpgllZ2dj3rx5CAkJYR3ltaiYFIFCoUBeXh7TDB07dqRiQookfyZg/kQFmUyKGeNHIDo6GtbW1pg2bRpCQkKwY8eOEr+nU1JSUKVKFVhZWRk4OXkVnucRFRWFsLAwQbcEqZurCJydnfHw4UNUrlyZWQaO4+Dp6YnLly+jdu3azHIQ4Xvd7gtt2rRBmzZtoNfrcejQIcyYMQMajQZNmzZFx44dYW1tDSC/m+xNM4SWL1+OKVOmmPS/yZItW7YM3bt3Z7a1fFFRMSkCFxcXKJVKpsUEyB+InzlzJqKjo5nmIML3pvEliUSCwMBABAYGQq/X49ixY5g5cyby8vJQzScA85OtAXDgODw32SFVqcLukyngHCpY9MxCUzp69Chyc3MLt18SMiomRVDQMmGtTJkykMlkyMzMRNmyhh1QJZZJIpGgadOmaNq0KXieR+zGBKg1j6CDFFLo8O2yjejXqDJsK7hj9KYU5KnVUMg9MVyposkQRqZUKrFu3TrR7HlGYyZFUNAyEYIPPvgAq1atYh2DmCGO49CvTUNYKRSQQgcrhQKje7WFtbU14vceQ55aDR2kADjmW3eYO51Oh+joaERGRgpiAlBRUDEpAqG0TADA3d0dN2/ehE6nYx2FmKGC8ZYASVr+/9aphpYtW+LLoT1gpVAUHqlAi0aNKzY2Fp988gkcHBxYRyky6uYqAkdHR2RkCOdJrFu3btixYwfee+891lGIGfJwsYO3dSYqO8if+2evGtQnhvf777/Dw8MD3t7erKMUC7VMikAqlUKv17OOUahVq1b466+/WMcgZszPzw8nT5587p95uNhhQEA1KiRGlJKSgsTERAwYMIB1lGKjYiJCHMfBx8cH586dYx2FmKmmTZviyJEjrGNYlJycHMyZMwehoaGso5QIFRORGjRoENauXcs6BjFT5cuXR1p6jtH39yL5eJ5HdHQ0QkJC3ngcuJBRMSkioc2osLa2hq2tLdLT01lHIWYoVanCDl09RG6/gO4LE6igGNny5cvRqVMn5mvZSoOKiYgNGzYMK1euZB2DmJmHDx9i0uwlkEgkyNXoBHGKnzlLTExEVlYW3n33XdZRSoWKSRFxHCeoQXgAqFy5Mu7fvw+tVss6CjEDPM/j119/xdy5cxE6egBkMhlNBTayhw8fIj4+HuPGjWMdpdRoanARlStXDpmZmXB0dGQd5Tm9evXCli1b0K9fP9ZRiIilpqZi/vz56NOnD4YMGQIA+H2sA00FNiKdToeoqChMnz5dcN3oJUHFpIicnZ2hVCoFV0yaNm2KjRs3lrqYvG1zP2KetFotvv/+e+Tm5mLmzJmFmz0CdH6MscXFxeGjjz4ym62RqJgUkYuLCx4+fCjIHXv9/Pxw4sQJNGrUqESvLzhMqeDwLTrJUBxK+wBw4sQJrFixAp988onoFsiJ3c6dO1G1alXUq1ePdRSDoTGTIipomQhR3759sXHjxhK/fv/ZG8jLUyNXo6fBVpEoeAAI23IGXb/7p1izrbKzsxEdHY2TJ09i/vz5VEhM7Nq1azh8+DAGDx7MOopBUTEpooKWiRApFAo4Ojri/v37xXodz/NYu3YtkvZthkIhp8FWEXn2NEWtVoPpP63B06dP3/q6Xbt2YerUqRg5ciRGjx4NiYS+AkwpNzcXcXFxCAsLYx3F4OidVERZnC3+vq0V7Hz7Dz/8ECtWrCjyz9+5cwcTJ06Eq6srvvsmDDs+b4nIoLrUxSUSz56mqFAoMKxrIMLCwrB582bwPP/Szz948ADBwcF4+vQpZs+eLer1DGIWHR2NyZMnm+UplTRmUgSpShV6/3QUWq0bui9MEOQXrqurKzIzM5GXl/fGNyrP81i5ciWuX7+O6dOnFx5yRIOt4vKqjRdb+8Vh3759GD9+PEaNGoUyFWvgWFoG7pz+G49vXkZoaKjZDPaK0YoVK9C+fXtUrVqVdRSjoGLyFikpKQhZuh1a1IQWUsj/G1MQ4hdv//79sX79egwdOvSV//769euYM2cOBgwYgA8//NC04YjBveoBoF27dmjdujVif1iBn29fAw8eMpkj/vgiGGXLCu89aylOnDiBjIwMs/7cUTfXa1y6dAmTJ0/Gzp07ETHmfVGMKTRo0ACnT59+qZtDr9dj8eLF+PXXXzFz5kw0b96cUUJiCjKZDDWbdoRUJoOOk0EikdKkCoYyMjKwatUqjB8/nnUUo6KWyQvOnz+PVatWwd3dHREREbCxsQEA0Zzl0Lx5cxw+fLiwYFy5cgULFizAsGHDSjx1mIhPgLsTpFIJpFo1AKlgH4DMnV6vR2RkJKKjo81+sgMVk/+cOXMGv/76K2rVqoXo6OiXxh3EMqbQo0cPjAudjuvSyrh86A/YarMQFxcn2p1ISckUjKlsTkgClCmieO+ao9mzZ2PkyJEoV64c6yhGZ/HF5MSJE1i7di28vb3xzTffQC6Xv/1FAnbj0VPskTbCrs2noVBUw85xraiQWCgPFzt81as5vvpqM/T6IWb/ZCw0u3btgpubG+rXr886iklYXDEpWDUsz7yJf//YjIYNGyImJgYymXn8KhLTMiCTyaHhdeA4iWAnCxDT6dmzJ7Zu3YrevXuzjmIx0tLS8M8//+Cbb75hHcVkzOMbtIhSlSp0W/AP1Go1pFIpdgZHwLOCA+tYBvXs+gMhTxYgphMYGIiJEyeiV69eZrGhoNA9ffoUs2bNwpw5c1hHMSmLavcmpmVArdFAx8kglcpw4sZj1pEMrqCvnBYgkme1a9cOBw4cYB3D7KUqVRgW9SMGfzzeLBcmvolFFZMGle3Bwfyf2j1c7DAgoBoVElKoa9eu2LlzJ+sYZi1VqULneQdxSlILozelCHa3DGOxqG6upH/3Iq59ZeQ5VBH8FF9CDInjOPj5+eH48ePw9/dnHccsJaZlQKfXQwcppAJe3GwsFtUySUxMRI+2zeipnVikgh0SiHE0qu5oET0fr2MxLZNr166hRo0aNABJLJZMJkPNmjVx6dIl1KlTh3UcsyNRKfFJjUxUbdjaIns+LKZlEh8fj0GDBrGOQQhTH3zwAVatWsU6hlk6ffo02jeuZ7E9HxZRTDQaDbKzsy1iFSohb2JjY4Py5cvj1q1brKOYnQsXLqBu3bqsYzBjEcVkx44d6N69O+sYhAjCyJEjsWzZMtYxzI5arbbo3SYsopgcOnQIzZo1Yx2DEEEoW7YsZDIZ0tPTWUchZsTsi8mNGzdQtWpVGngn5BnUOjGs9PR0ODlZ1uytF5l9MYmPj8eQIUNYxyBEUCpWrIisrCxkZ2ezjmIWzpw5gwYNGrCOwZRZFxOdTofHjx9b/BMDIa8yfPhwLF++nHUMs3D69GmL2R34dcy6mOzatQtdunRhHYMQQfLw8MCtW7egVqtZRxG9x48fw9HRkXUMpsy6mPz9999o1aoV6xiECNbgwYOxZs0a1jGIGRBUMUlVqrAu8UapN0hLVarw056zsHapRgPvhLyBr68vzp07B71ezzqKaD19+tTidgh+FcFsp5KqVKH7wgTwPA+Aw5aPG6OGcxkAKCwIRfnf1IcqBC38F2q1GnK5B4YpVRa5GpWQourRowe2bduGXr16sY4iShcuXIC3tzfrGMwJppgkpmVAo9FAw0sggw4xS9fjHcWj/4oLivy/l7TlkaetBh2kkMPydu4kpLgCAwPx5ZdfomfPntSSL4HTp0+jbdu2rGMwJ5hiEuDuBJ7n/9txU4qIMe+XqAgUtHA0Gi14nre4nTsJKYm2bdviwIED9KVYAmlpaahevTrrGMwJZszEw8UO3WXnSn1CYMFJg2Fd6yBIfp5aJYQUAR2eVTrUohNQMdHpdCgnVRtkx00PFzsMC6wFWW5GYfcXIeT1nj08ixQdTVz4P8EUk9TUVHh4eBj0mo0bN0ZiYqJBr0mIuerfvz82bNjAOoaopKWlGfx7S6wEU0zOnj0LX19fg16zS5cu1HQnpIhkMhk8PDxw6dIl1lFE4/Tp0xa/jUoBwRSTCxcuwMvLy6DXtLa2hlqtpqYoIUU0bNgwLFy53iDrvSyBpZ9h8izBFBO1Wm2UhT+BgYFISEgw+HUJMUd3srT4g2+AiN/Oo/vCBCoob2HpZ5g8SzDFxFjat2+PPXv2GOx6hlqlT4gQJaZlAACeavXg+f//PSFvI4h1JiqVCmXKlDHKtRUKBXieh1arhUxWuv/cC7fS0fvHo+AkHDiOK9UUZkKEKH9dVsF6L9A6rTegM0yeJ4hicv78efj4+Bjt+gULsjp06FCkn9doNLh69SrOnTuH5ORkaDQa8DyPNGkl6PmqUGs42MiltLqemJ0Kthx62V6Gf+f+CHB3ovf3G9AZJs8TRDFJSkpC586djXb91q1bY3z4DGSUq/PcB0Sv1yMtLQ3nzp3D+fPnkZOTA47jIJPJUKtWLfj4+OC9994rHMspWF0v5UFPbcQsHThwAL3bt0CzgGqsowje6dOnMXz4cNYxBEMQxeTmzZuoUqWK0a5/PSMXf/D1sXtrEvR6Ht1lZ+HAPQXHcahRowa8vb3Rrl27t3a1FayuT0zLoKc2E0lVquj3bUJHjx5FZGQk6xiiQGeYPE8QxYTneaNuR3Dwwi3o9Ty04GAtl6JZ0PsYUMInLw8XO/pSM5H/7ySd3xKkMSrj4nkeer0eUqmUdRQiQsxncxl7u5PHjx/j4IZlsLJSwEYuhYTjqHtKJBLT8rfDydXoaGaRCSQnJ+Odd95hHUMU6AyTlzFvmdy+fRtVq1Y1yrUzMzMRGhqK+dOn45FWTt0lIlNQ9GXQg+Ok9BBgZLt378bgwYNZxxAFOsPkZcyLSVJSksG3UUlVqvBP8h3sX78Uc6dNg6OjIxwBKiIi4+FihxUD38GKHQn4+sNe9OdnZEqlEq6urqxjiAKdYfIy5sXkn9OX8E6r7nA10ImIqUoVui34J39lquO7eKxTgJ5nxau8QofmFelBwNiMudbLHNEZJi9jOmaSqlRhQ1ZNfPtnisG2bijoZ9dxMgAc9bOLXHZ2Nn3JmcC+ffvQrl071jFEhc4weR7TYpKYlgG5XGHQAdYAdydIJBJIeR2tBTED5lBMxLAFz/Hjx+Hv7886hijQxrGvxrSbK8DdCRwHg27dULAWZO6v2/Fes+rUPSJyYi8mqUoVusz/CzwPyGRSQU5vpinBxUNnmLwa05ZJwRd/aY/qfdV1Y0YF4fDubQa5Hnk9Yz91i72YHLryAFqtDmo9kJenxszlm5CZmck61nNoZlLx0Bkmr8Z8AN5YiwDt7OygVqtpi2gjMsWiQrEXk5QjuyGXV4eCk4DjpBjSoQkWLlyI3Nxc9OnTBw0bNmQdEbt378YHH3zAOoZoXLhwAd27d2cdQ3CYFxNj6t69O37//Xf07t2bdRSzdCwtAxqNFhqegxQ6zF+zA+ODGsPd3d1gg5NiLiaPHj2CPvMedo4b+twap1YNQ5GXl4dNmzZhzZo18PHxQf/+/WFtbc0kZ3p6OpydnZncW4zoAfXVzLqYNGnSBJMmTaJiYgQZGRk4sG4JJNZNYSORguOkeK9pDezbtw9paWkAADc3N7Rs2RI+Pj6QSErWoyrmYrJo0SJ89tlncH1F69vKygqDBw/G4MGDcfbsWcyYMQMymQyDBw+Gp6enyTI+efIE9vb2JrsfMV9mXUw4jkPlypVx+/ZtVK5cmXUcs7Fnzx7s2bMH34ZOeXlngcb1Cn/u9u3bSEhIwIYNG8DzPMqWLYvmzZvD39+/yFtRiLWY3LhxA9bW1kVaBFivXj3Uq1cPWVlZiI+Px08//YTAwEB069at1GfwvM2+ffvQvn17o97DnJy8cgt3bNyRaqB1ceaEK87eWP7+/vzx48eNGMfwHjx4gFWrVuGrr75iHUX0cnNz8e2336Ju3boYMGBAsV//+PFjHDp0CMePHy88prlx48Zo1qwZHBwcXvmaiIgIREVFlTa6yU2ZMgVhYWElKoQ8z+PQoUP4/fff4ejoiKFDh8LNzc0IKYGwsDBER0eXuOVoSVKVKnSaezB/6YFUIsiZecbAcdwJnuffOm/crFsmAODq6gqlUgm9Xk8fmFI4ceIEVq5cieDg4BIfF1CuXDl07doVXbt2BZC/WV5iYiJ++OEHZGVlQSKRwNfXF4GBgahYsSIAIJO3xrrEG6LaU+3MmTPw8PAocYuK4zi0aNECLVq0gFKpxC+//IL79++jc+fOaNOmjcHGo3ieB8/z9LkoohU7EwDwyNPxsJGADsd7gdm3TABg586dsLW1RZs2bVhHER2tVovvvvsO1tbW+OSTT4z6xaPT6ZCUlIR//vkH9+/fxxPeGjv1vlAorES1Bf3EiRMRGxtr0C4qnU6H3bt346+//kK1atUwZMgQlCtXrlTXTEpKwoULFzBw4EADpTRfhw8fxrb9h/Gbuq7FHYlALZNndOzYEeHh4VRMiiklJQXz5s3Dp59+irp16xr9flKpFA0bNiycLrs28Qb2bj+PXI1ONMck79+/H61atTL4WIdUKi1s1aWlpWHRokXIzc1F79694efnV6Jr/vnnnxgxYoRBc5qjs2fPYufOnYiJjsZHD7Np9/HXsIhiIpPJYGdnh8ePH5f6ac4S8DyPFStW4O7du5g9ezazaZCN3Z3AcZxBd0gwJr1ej99++w1z58416n3c3d0RGhoKtVqNzZs3Y+3atfD29kb//v1hY2NT5Os8evQITk7C/p2ylpKSglWrVmHmzJngOI4Ox3sDi+jmAvLfFHv37r6P704AACAASURBVMXHH3/MOoqgPXjwADExMejTpw8CAwNZxxHVsb1r165FtWrV0Lx5c5Pf+9y5c9iwYQMkEgkGDx6MWrVqvfHnMzMz8eOPP2LSpEkmSiguqUoV9py+hmM74vHjrGjI5XLWkZihbq4X1KxZEz/99BPrGIK2fft2HDp0CFFRUa+dXWVqYnkSzMvLQ2JiIrPxBx8fH/j4+CArKwtr167FkiVL0KxZMwQFBb2yy23Pnj3o0KEDg6TC99wxFg6tcfNxHjxcLLeYFJVFTeOoV68ekpKSWMcQHJVKhdDQUOj1esTExAimkIjJ0qVLMXr0aNYxYG9vj9GjR2PmzJmoUKECwsPDERsbizt37jz3c7S/1OslpmVAo9H8d4wFHRddVBbTMgGAPn36YObMmQY/2VHMDh8+jHXr1mHy5MmF03FJ8WRmZuLu3buCOj+d4zg0b94czZs3h1KpxOrVq3Hv3j106tQJ1XwCcEXvgrT0HFG0+kytYGxOLGN1QmFRxcTW1haPtHKsPpyK5p6uFv1B0mg0mD17NlxcXDB37lw66KcUCrZNESoXFxdMmDABer0eq7bswug5+yGVeqL7wgSLmd5aHOWkagx0TEO9d3uKYqxOKCyqmKQqVdiFBtj1+wXIZJct9oN08eJFLFq0CF988cVbB2rJm92+fRsSicRoK9QNSSKRwKaaDxRnLiBXo4OUp4V3r/LXX3+hZ9vm8PevxjqKqFhMMTl+/Di+3fA3eGktaHiJRX6Q9Ho9Fi9eDJVKhXnz5hl93ydL8P3332Py5MmsYxSZMQ6kMzenTp3Ce++9xzqG6Jj1twnP89i/fz927twJf39/xEwYiR4/HIbsvxWs5vxBKphSW7GsNe5lPkU1Gw3WLJ6PoUOHIiAggHU8s3DhwgVUqVJFVLvuFhxIJ5bp1izodDo6dbIEzLKY6PV6bNu2DQkJCWjbti3i4uIKxwQs4YNUcGiVVqeHWsdDxvEAr8dvX09F3ap0boWhLFu2DDExMaxjFJtYpluzkHjpBh7Y1aRdgUvArIqJRqNBfHw8zp07hx49emD27Nkv/YwlfJAS0zKg+6+QADy0PAcbuQJn7+WgblXW6czD33//jaZNm9IhSWYkVanC4JVnwHEV8C9NTig2sygm2dnZWLFiBW7evIlBgwZh2LBhrCMxVdAvLgMPLThYySRm361nSjzPY9OmTZg3bx7rKMSAvt/4JwA51HpAotdb3JhqaYm6mDx69AhLly5FZmYmPvzwQ5OeUCdkHi52+KFHdWw7fB69OrXBvcynZt2tZ2qbNm1C7969aTq1Gfn1119RScZDLneGjOehVqtR25HGTYpDNMXk2T2arDVPsGzZMgDAqFGjRDEt09RqOJdBA/sctK799pP+SNFpNBocOnQIc+bMYR2FGMjy5cthY2ODiaMHoud/3zNezgosnj0d3377Lezs6CGsKERRTAoGlHU6PXQ6LQaUvYavxo6Fo6Mj62iCJZPJoNFoWMcwK6lKFeJWbkGPvkNZRyEGsnjxYpQvXx59+vQB8PyY6tSpUzFlyhTExcUV+ZhpSyaKvbkKBpTzdDzkcjl82/WiQvIWcrmciokBFWz+tzu9LCbsvo9UpYp1JFJKixYtQsWKFQsLyYtcXV3x1VdfISQkBDqdzsTpxEcUxSTA3Qm8Xg8rKQeO42gguQjkcjm0Wi3rGGYjMS0DWq0OOkjB87T5n9jNnTsXNWvWfOvixOrVq2PUqFGYOnUqinNchyUSRTHxcLFDD5tkhHd9h6brFRF1cxlWgLsTeF4PGznNjBMznucRGxsLX19fdO7cuUiv8fLyQs+ePUW5psiURDFmAgA2mid4v7kH6xiiQd1chuXhYoeukiS0CPqAZsaJFM/zmDFjBlq1aoWWLVsW67UBAQF48uQJFixYgM8//9xICcVNFC0TUnzUzWVYjx49QjVHawwIqEaFRIR4nkdUVBTatWtX7EJSoF27dqhatSpWrlxp4HTmgYqJmZJKpVRMDOjw4cNMjuMlpafX6xEeHo6goCA0bdq0VNfq2bMnOI7Dli1bDJTOfIiimOj1elogVkz0+zKsEydOoFGjRqxjkGLS6XQICQlBv379DPbn98EHH+D27dvYt2+fQa5nLkRRTO7evYtKlSqxjiEqqUoVLuucaQqrgeTl5dFaA5HRarWYPHkyPvjgA9SvX9+g1x47diyOHj2KxMREg15XzERRTK5fvw53d3fWMUSjYJHnMW11dF+YQAWllNRqNeRyOesYpBg0Gg2Cg4MxevRo1K1b1yj3mDJlCrZu3YqLFy8a5fpiI4pikpaWhurVq7OOIRqJaRnQ63loIaE1EQZw6tQp+Pn5sY5BiigvLw9ff/01xo4di9q1axvtPhzHITo6GkuXLsX169eNdh+xEEUxuX79OhWTYghwd4Jer4dCav6HgJnCv//+S4PvIpGbm4uvv/4aEydOhIeH8ZcSSKVSzJgxA3FxcXjw4IHR7ydkoigmubm5sLGxYR1DNDxc7NDPIQVTOnrSIk8DyMjIQPny5VnHIG+RnZ2N4OBgTJ48GdWqme78disrK8TExCAqKgqZmZkmu6/QiKKY0Myk4pNmP8TwVnWokJQSbaEhDllZWQgODkZYWBiTyTp2dnaYNm0aQkNDkZuba/L7C4Eoigl9oIsnVanCFb0LDbwbQEpKCp2TI3CPHz/G5MmTERUVhQoVKjDL4eTkhJCQEEyZMsUid58QfDGhNSbFc/VBFjrP+4tmchlIQkICWrRowToGeY2MjAyEhIRg+vTpcHZ2Zh0HlSpVwtixYzEudDrWHLtuUZ8/we/Ndf/+fVSsWJF1DMF79OgRVq1ahYQ7ekBWG/9r797jqqrz/Y+/1t6bu5dkxNLyLtZgiiLqQR17mJ4pL5DOsWMz6Uxl/UrL0jTvclEKBSVvWb981PxMZ/IyZ1QUnMmkOt7lqlk6QsSEmoAXQBDY7L3X7w+CUacShb3XXovP8/Hg8fCy9loflL3fa32vdsWM3S5bjzZWbm5us98G2l0VFxcTHR3NsmXLaNWqldbl1DO1vo/PvAaxb8cJPDw8SJ7+q2bxHnT7MJE5Jj/vxIkTbNu2DV9fXyZPnky4jz9j1x3E/MPWow+19dS6RN2TJ2P38/333/Pmm2+yfPlyt9sJMS3/CopiwoYZtaaGtVv2kvjKBMP/HLl9mOTn59OnTx+ty3ArNTU17Nixg7S0NPr06cPixYvx9vau//s9rwwlLf8KgfeY2Lg2npUrVxr+B9kZLl++jL+/DKt2N+fOnWP58uXEx8fj6+urdTn/ZkAXfxQFfDzMKIqZwYGtmTFjBtOmTePBBx/UujynUe6kczs0NFRNT093Yjn/bvny5bzyyiv4+fm59Lru6OLFi2zcuJGSkhLGjx/PwIEDb/uaI0eOkJ2dzdSpU11QobF8sG03hWpLnno0tFk0U+hBfn4+iYmJxMfH33QD5W7yfthLvm67AqvVyvr166mqquK1117T1VQHRVEyVFUNvd1xbv9kcv369WYdJKqqcuTIEZKSkggICOC5554jICCgwa8PCwsjMzOTo0ePNnrF1OYkr7icuCwVD49KNn99UObruIHc3FzeeecdVqxYgaenezff3riXPICnpyczZswgPz+fBQsW8Pjjj/PYY49pWGHTc/swaa4qKyv5+OOPOXPmDIMHDyY2NhaL5e7+u6ZNm8asWbMIDAyUyXe3uH79Orm5uZw9e5acnJz6OQI5jgAcjk5U1jjw8TDLQAaNnTlzhg0bNhAfH6/rddK6dOlCYmIiu3bt4o033mDmzJmGWcRWwsTN5OXlsXnzZux2OxMnTuS5555r9DkVRSEqKorIyEjefvttTCa3HxHepKxWK99++219YJSUlNT/na+vLz169KBnz56MHj26vg0+r7icUau/QFVlSRqtnTp1ik2bNhEfH4/ZbNa6nEZTFIVx48YxcuRIEhMTadeuHS+88ILuvze37jP5pvgai1f/P2Jfe1YXd4W3tpM2lMPhYN++fXz66ad07dqVSZMmOWWoY1ZWFp9//jkzZ85s8nNrzeFwUFBQwNmzZzl79iyFhYX1f+fh4UG3bt0IDAwkMDCQNm3aNOicuYVlLFz9R+JmTtHFz58RZWVlsX37dmJjYw17E5Sdnc0HH3zAM88845Z75jS0z8RtwySvuJwxaw9gs9nw8PBw+zbrumXf6+5kG1JvaWkpmzZt4rvvvuPXv/41I0aMcPqoqw8//BC/+7pCQHdd7GV+Y0B3betHYWEhOTk5nD17loKCAhwOBwAmk4mOHTvSs2dPevbsSbt27Zrk3zIyMpJFixa5fRu9EaWlpbF7926io6MNGyR1HA4HH374IQUFBbz++uu0bt1a65Lq6b4Dvm7Z9BrVhOWHZdTd+YNva2oG1VYrdsx4KCoH/vE93QICf/TYU6dOsXXrVry8vJg0aZJL59E8Ev4kj7/9OQ41G4vJzI6XBhHUUfuZw7eqqKhgV+oRoo5U4lBVFGCs5RQ9299DYGAgI0eOpGPHjk7/kBk5ciT79+9n1KhRTr2OuNmhQ4fYv38/MTExzWJYu8lk4vnnn6ewsJC4uDhCQkJ48skndfW9u22Y1I7VVvA01e6Y5s5t1ikpKVzLO4uX50Ooqoqqqny5fwfz9lwhLCyMB0N/Rea5MspyM8nNOszDDz/MggULNBkemJ5/FYvFg8oaO2Yg7oPtdKo5R4sWLRg2bBgDBw7UpIOzqKiIQ4cOkZ2djd1ux9fXF2vHUCwWS30neFj4JCYOcN1qsABDhgwhMjJSwsQF6p5C1aJcvj15jMWLF+vqw7Qp3HvvvSxbtozU1FRmzpzJ9OnT6d69u9ZlNYjbhkm3gBb1k++++jyJkoKzEOB+GxRt2rSJ6upq3po/g+dv6jMZjaqq/HXfwdrmL8Bi9iJlbhTdA1pqVu/NE6og5uXJdAtowbVr1zhw4ABvvvkmNpuNtm3bMnz4cHr37t3kd/+qqvLNN99w8OBBcnNzAQgICGDo0KGEh4fXj1rLKy5nW+7B+lq1uKEwm81YLBasVqs0dTlRXTOxzWbH4XDwyevTm12Q3OjRRx9lyJAhrF27FoDp06e7/bbRbttnciOHw8GsWbNYtGiR2wxtVVWV1atX07lzZ8aPH/+Tx21N+47o3V9TWWPHx8NMdHiQy++ub9WQgQLFxcV89tlnnDx5ElVV6dSpEyNGjKB79+53/Ca32WycOHGCgwcPcunSJQC6d+/O0KFDb3u+ux3U0JQOHTrE1atXGTt2rCbXbw62pn1HVNIpqmyq27xP3EVubi5r165l3LhxDB8+3OXX130H/K1KS0uJjIwkMTFR8yF0DoeDJUuWMHz4cB555JGfPfZuOubd0T//+U9SU1P55ptvUFWVX/7yl4wYMYL27dv/2wd+RUUFx44d49ixY1y/fh2z2UxwcDBDhgyhXbt2Wn8rd8zhcLBo0SLeeustrUsxrLzicv5z5X48PT1RFEW37xNnUVWV7du3k5GRwaxZs1z6PjJcmEBtx3VKSgpz5szRrIbq6moWLFjAM888Q+/evRv0Gne4u25Kqqpy+vRpUlNTOft9CSmOPiiKCVV1MMb8Jff5mRg0aBCDBg0yzOoF0dHRzJs3z62X8NCzffv28U1xOW0C+xvmfeIMpaWlJCYm0rFjR5577jmXjHIzZJgAbN26FT8/P02aHMrKyli4cCGzZ8+WPel/UNuM99UPneQmosN7GbJ54siRIxQXFxMREaF1KYZjtVqZM2cOb7/9drPuJ7kT6enpbNy4keeff57g4GCnXquhYaK7wdsTJ04kPT29vuPWVS5evMj8+fOJjo6WILlB3ai72k5yxa1H3TXGoEGDOHr0qNZlGNL69euZOnWqBMkdCA0NZdWqVRw+fJglS5ZQXl5OXnE5W9O+02xDLrcdzfVzFi5cyMyZM122BHVOTg7r1q0jPj7eMM02TeXGUXdGbp4wmUx4enpSWVmpqxVf3d25c+coLy839NLszmI2m5k6dSoXLlxgdkw8qZ4DMZvNmvU56e7JBGqXx1i4cCExMTFO3x8+PT2dDz74gBUrVkiQ/IRuAS2YOKCTYYOkzqhRo/j73/+udRmGsmbNGmbMmKF1GbrWoUMHhv/384BCZY0DVf3XpG9X0mWYALRv357w8HA2bNjgtGt88skn7Nu3j7i4OF2vVCqaxsCBAzl27JjWZRjGZ599xoABA9xup0Q9GtDFH4vFrOmcLN2GCcDQoUOx2WwcPny4yc/98ccf8+233zJ//nxpyxVA7WqvPj4+9cvUi7tXU1PDzp07mTBhgtalGEJdc3N0eJBmw6p1HSYAU6dOZceOHTetEttY69atw2Kx8OKLLzbZOYUxjB49mr1792pdhu699957vPjii3Kj1oS0bm7WfZgoikJ0dDSxsbHYbLZGnatuMmJQUBBPPvlkE1UojKR///5oPTxe777//nuuXr1KUFCQ1qWIJqT7MAHw8/Nj+vTpxMXF3fU5rFYrc+fOJSIigkcffbQJqxNGUtfUVVFRoXUpurV69WpD7qnT3BkiTAB69uxJnz59+Mtf/nLHry0vL2fWrFlMmzaNvn37OqE6YSRjxowhJSVF6zJ06cCBAwQHB9OypXaLnQrnMEyYADzxxBPk5ORw+vTpBr+mqKiIuXPnEhkZSdeuXZ1YnTCKfv36kZmZqXUZumOz2di+fTtPPfWU1qUIJzBUmADMmTOHd999l7Kystsem5eXx9KlS1m+fDkBAQEuqE4YgaIo+Pn5UV6uzUxjvXr//fd54YUXpNPdoAwXJmazmcjISKKjo392QmNWVhbvvfceiYmJMs5d3LGxY8eSnJysdRm6UVhYSFFRUYMXRxX6Y7gwAWjbti2//e1v6zeWudX+/ftJTk5m2bJlMhlR3JXg4GCys7O1LkM3Vq1aJZ3uBmfIMAEYMGAALVu2JDU19aY/37ZtG2fOnGHRokUuWb5ZGJOiKLRoUbtDpfh5R44cISgoiNatW2tdinAiQ3+aPvvss3z66acc+jKXrWnf8eaaDTgcDl5++WWtSxMGEB4ezp49e7Quw63lFpaxbNsXhD02TutShJMZOkwAJr88m9//6SsW/DWbj4o6MHCEbL0qmkbv3r05efKk1mW4rbzicsasPcDXPr2IeOeQZkujC9cwfJik519BVcGOGZPJrMlqmsKYFEWhVatWDRo52Byl5V/BZDJTo5qwWms4Lu89QzN0mBQUFPDplvfx8vTUdDVNYVwREREkJSVpXYZbqt04DXw8zJjNJlK3vC8rBxiYLjfHaojDhw+zc+dO/m/CEi5csxl+8yahjV69erF582aty3BLt26c5mvvz9y5c5k5cybdu3fXujzRxAwZJhs3bqSsrIzly5ejKArdvJEQEU6jtgjgj1/8g0eC7pefs1t0C2hxw79JCxITE4mNjWXIkCE89thjmtYmmpahmrlsNhsxMTG0a9eO6dOny0xb4XR5xeXsrHqIZfu+Yey6g9LJfBuenp4sWbKEwsJCVq1a5fSdUoXrGCZMrl69ysyZM3nqqacYNWqU1uWIZiIt/wqKYqLarmq2Xaoe/f73v2fw4MHMnj1blqUxCEM0c50+fZr169ezZMkS2rRpo3U5ohm5sZNZBnjcmYEDB9K5c+f6fpQePXpoXZJoBOVOHjNDQ0NVd9sYKCUlhfT0dBYsWIDFYohsFDqTV1wuAzwaoaamhtjYWMLCwnj88ce1LkfcQlGUDFVVQ297nF7DRFVV1qxZg7+/P5MnT9a6HCFEI23atIlLly4RMel50vOvSji7iYaGiS5v5SsrK4mMjOQ3v/kNYWFhWpcjhGgCkydPJumzo/x6ZSpmiwWL2cyeV4ZKoOiE7jrgz58/z+zZs3nttdckSIQwmMoWHUBRsNqh2mpl/tsfkJycTFVVldalidvQ1ZPJ8ePH2bZtGytWrMDHx0frcoQQTWxAF38U6gY0mHlz2rMU5n7J8uXLqaqq4uGHH2b06NEy0MYN6SZM/vSnP1FcXExCQoLMHxHCoLoFtCDc4yv+I/zp+j6THvcOYciQIaiqytdff82GDRsoKSnhgQceIDw8nI4dO2pdtkAHYWK324mLiyM4OJinn35a63KEEE7W2lTNxAGd/u3PFUWhV69e9OrVC6hde2/37t2cO3eO1q1bM2bMGHr16iU3mxpx6zApLS0lMjKSF198kaCgIK3LEUK4QENHmHbs2JFp06YBUFJSQkpKCn/+85/x8vJixIgRhIWFYTabnVmquIHbhsnZs2dZu3YtMTEx+PvLRDAhxE+75557+N3vfgdAVVUVqampREVFoaoqYWFhjBgxQvpZncwtw+STTz7h0KFDJCYmyh7tQjQzjW2m8vb2ZvTo0YwePRq73c6xY8dISEigsrKSXr16MWbMGOnAdwK3ChNVVXn33Xfx9fUlJiZG63KEEDpnNpsZPHgwgwcPRlVVTp8+Xd+B36FDByIiIujUqbZ/RlYyaBy3CZPq6mqioqIYO3YsQ4cO1bocIYTBKIpCUFBQff/r+fPnSUpKoqCgAIdfW3ZWPYSiKCiKIpMl74JbhMnFixdZunQpc+fOrb9LEEI0T65alv7+++9n6tSpAPzxi39g/3sONaqCj0ft9t4SJndG0zDJKy5n+xdZ5B75G6vi4/Hz89OyHCFEM/VI0P0kpH6LRUVWf75LmoVJXnE5o9f8LzabDc8Wv6Lwuko3yRIhmj0t5oncusWwPJXcOc3CJC3/CjU2G3bMePywqZD8BwrRvNntdkwmbZYMvHmLYXGnNFvoMbRLGxRVNhUSQvxLdXU13t7eWpch7oJmTyY1l88ztXspD/R9RB4rhRBA7fYSEib6pFmYJCcn84c//IG2bdtqVYIQws1UVVXJTHWd0qyZ6/LlyxIkQoibVFVVyZOJTmkSJkVFRQQEBGhxaSGEG5Mw0S9NwiQ5OZmxY8dqcWkhhBuTPhP90iRMcnJyCAwM1OLSQgg3Jk8m+uXyMJE7DyH0K6+4nK1p35FXXO6U8+dfuc6xYrPTzi+cx+Wjufbv38/IkSNdfVkhRCPVrVpRY7OhAOEeX9HaVH3b16mqWr+Aoslkqv/1rV+lDi+2lnbFYrHw538clMUWdcalYZJXXM7mw3nEvjbMlZcVQjSB//nf7PpVK3w8zPxH+NM/ur3uj1FVtf7L4XDc9Pu6r79kXsCUcoZqO/iYZFUMvXFZM1decTlj1x0kTe1CxPrD8hgrhI5kZmZSkPk5Xp6ed7VqRd1TidlsxsPDA09PT7y8vPD29sbHxwdfX1+GPngfigJeZkVWxdAhlz2ZpOVfQVVV7JhRVVXuOoTQiczMTHbs2MHq2CV8e6nCaYshdgtowf/pdAWfzr0Z1T9QPh90xmVhMqCLP4qi4GVWsFqt9G4vSwQL4e7qgmTJkiUoiuL0xRBbUklE8H20lyDRHZc1c9Ut8bzkiYfZPOlh3omLpKSkxFWXF0LcoczMTHbu3FkfJK5QXV2Np6enS64lmpZLhwZ3C2jBxAGdCHu4O7GxsSxatIjz58+7sgQhRAPUPZHExMS4dH8Rq9WKl5eXy64nmo5ma3O1adOGhIQEVqxYwZkzZ7QqQwhxi4yMDJc/kdSRJxP90ixMAHx8fFixYgWbN2/m6NGjWpYihKA2SHbt2uXyJ5I6VqsVDw8Pl19XNJ6mYQJgNptZunQpBw4cIDk5WetyhGi20tPTNQ2SOlpeW9w9zcMEan943njjDS5evMimTZu0LkeIZic9PZ2kpCQJEnHX3CJM6kyZMoWWLVuyatUqVFXVuhwhmgV3CRKhb24VJgDjxo0jJCSE6OhoHA6H1uUIYWjp6ens3r3bbYKk1OHl1IUkhfO4XZgADBs2jAkTJvDGG29QXX37heSEEHeuLkiio6PdIkjyisvZXdOL6N1fM3bdQQkUnXHLMAHo3bs3r776KrNmzaKsrEzrcoQwlLS0NPbs2eM2QQK1Sy6hKFTW2FHVH34vdMNtwwSgc+fOxMTEMG/ePC5evKh1OUIYQlpaGsnJyURFRblNkEDtkkueHh54KA5qaqz0vb+l1iWJO+DWYQLwi1/8goSEBOLi4sjJydG6HCF07fjx4+zZs8ftggT+teRS7PhgNvxXd9a+tZivvvpK67JEAyl3MmoqNDRUTU9Pd2I5P62mpobFixczYcIE/Ds/5LSVS4UwquPHj5OSkuKWQfJjbDYba9aswdPTk2nTpmEyuf29ryEpipKhqmrobY/TS5hA7QY7895MZGflQ5jMtXsqyG5sQtye3oLkRllZWXz44YfMnj2bzp07a11Os9PQMNFV1CuKQshjT6KCdNIJ0UDHjx9n7969ugwSgH79+pGQkMBHH33ERx99JHPQ3JSuwgRqO+ksFvNd7fYmRHOSV1zOsm1fsCU5lcjISF0GSR1vb28WL15M586def311ykqKtK6JHELXTVz1ckrLpc+EyF+QnV1NZ8cyeb1T4pwOBx4eXkZqjm4rKyMuLg4wsLCiIiI0Locw2toM5fLdlpsSs7e7U0IvaiqquLLL78kIyODCxcuAODp6Un5vX0wmy3UqCZsNruhtslu1aoVcXFx7Nq1i/nz5zN//nxatWqldVnNni7DRIjmqLKykpMnT5KRkVE/78rLy4s+ffoQERFBhw4d6o/NKy4nad1BfDzAZqsh5/DfUENf0HVT162eeOIJwsLCiIqKYvz48QwbNkzrkpo1XTZzCWF0169f58SJE2RkZNT3D3h7exMcHExISAjt27e/7TlubA4+dzqTvXv3Eh0dbbidDFVVZdOmTeTn5zNnzhy8vb0b/FppMr89Qw4NFsKIKioqyM7OJiMjg0uXLgG1G8cFBwfTv39/7r333ia5Tn5+PgkJCURFRdGuXbsmOac7yc/PZ+XKlUyZMoW+ffve9vi84nLGrD2Iw2HHbDYbql+pKUmYCOGGrl27Vh8cKAlCeQAAA2dJREFUV65cQVVV/Pz86Nu3LyEhIU7/kL927RqLFy/m2WefJTg42KnX0oLD4WD9+vVYrVZeffVVLJafbsnfkvYdC/8nG7tSOzo0OjyIiQM6ubBafTB0B7wQelBWVkZWVhaZmZlcuVI7H6pFixb069ePSZMm0bZtW5fX1LJlSxITE4mPjycvL4/x48e7vAZnMplMvPLKK5w6dYoZM2YwY8YMevTo8aPHnv5iNxZLFzxNMs2gKciTiRBNoLS0lMzMTDIzMykpKQFqRx3169ePkJAQ/P3d74Nq69atFBQUMGvWLEN1zNexWq2sXLmSgIAApkyZctP3mJSUREVFBYNGhkufyW1IM5cQTnL16tX64KjbHqF169aEhITQr18/2rRpo3GFDZeWlsaWLVtYunQpvr6+WpfjFEeOHGHLli3MmzePSktL/nrwJEVfHSZ+0WytS9MFCRMhmsDly5fJzMwkKyuLa9euAdCmTRtCQkLo27cv99xzj8YVNt6FCxeIjY1lwYIFPPDAA1qX4xQVFRUsiFtFiqOPISdyOpP0mQhxhy5dukRGRgZZWVlUVFQA4O/vT0hICC+99JJhJ8Z16NCBlStXEhkZSdhj46hp3dFwzT5+fn4MfmIyf9v1JTWqqX5dPyN9j1qTMBGG92NzCYqKisjIyCA7O5vr168DtXvn9O/fn5dffpmWLZvXxkw+Pj68NCeSxxM/RzGVYLEYb6jsgC7+mM1mfExIh7sTSJgIQ8srLmfsuoPY7XbsdjtjzF/SSqkiICCA/v378+qrr+Ln56d1mW4hPf8qFg8PKmvsmA145163+ZZ0uDuHhIkwtLT8K6gqVNvBx8ODweGTZS7BTxjQxR9FwdArcsu6fs4jYSIMrTl8QDYVuXMXjSFhIgxNPiDvjNy5i7slYSIMTz4ghXA+3e20KIQQwv1ImAghhGg0CRMhhBCNJmEihBCi0SRMhBBCNJqEiRBCiEaTMBFCCNFoEiZCCCEaTcJECCFEo0mYCCGEaDQJEyGEEI0mYSKEEKLRJEyEEEI0mqKqasMPVpRi4J/OK0cIIYSb6ayqasDtDrqjMBFCCCF+jDRzCSGEaDQJEyGEEI0mYSKEEKLRJEyEEEI0moSJEEKIRpMwEUII0WgSJkIIIRpNwkQIIUSjSZgIIYRotP8PLiXOf4reJR4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 504x504 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "draw_edges(solve(points, 3))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5180deb-4cc3-41f2-a440-e04f787b93df",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}