Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "7ee10bd7-40c0-49aa-b66a-664c8fa5bbf5",
"metadata": {},
"outputs": [],
"source": [
"# Der eigentliche LP/(M)IP-Solver \"Gurobi\"\n",
"import gurobipy as grb\n",
"\n",
"# Eine Menge nützlicher Routinen zu Iteratoren (erlaubt z.B. Iteration über alle Kombinationen)\n",
"import itertools\n",
"\n",
"# Graphen\n",
"import networkx as nx\n",
"from networkx.classes.graphviews import subgraph_view\n",
"\n",
"# Generation von zufälligen Zahlen für Instanzen/Punktmengen\n",
"import random\n",
"\n",
"# Fürs Wurzelziehen\n",
"import math\n",
"\n",
"# Fürs Zeichnen (hier von Graphen, kann aber auch Daten visualisieren)\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"id": "98e49156-6a70-4eb4-9f45-e1f9cf1d85aa",
"metadata": {},
"source": [
"## Hilfsroutinen\n",
"Zur Generierung von Instanzen und Erzeugung/Sortierung der Kantenmenge."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "16d94ecd-1448-4172-9bed-9f7d0cfd21c2",
"metadata": {},
"outputs": [],
"source": [
"def random_points(n, w=10_000, h=10_000):\n",
" \"\"\"\n",
" n zufällige Punkte mit ganzzahligen Koordinaten in einem w * h-Rechteck.\n",
" :param n: Anzahl der Punkte\n",
" :param w: Breite des Rechtecks.\n",
" :param h: Höhe des Rechtecks.\n",
" :return: Eine Liste von Punkten als (x,y)-Tupel.\n",
" \"\"\"\n",
" return [(random.randint(0,w), random.randint(0,h)) for _ in range(n)]\n",
"\n",
"def squared_distance(p1, p2):\n",
" \"\"\"\n",
" Berechne die (quadrierte) euklidische Distanz zwischen Punkten p1 und p2.\n",
" \"\"\"\n",
" return (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2\n",
"\n",
"def all_edges(points):\n",
" \"\"\"\n",
" Erzeuge eine Liste aller Kanten zwischen den\n",
" gegebenen Punkten und sortiere sie (aufsteigend) nach Länge.\n",
" \"\"\"\n",
" edges = [(v,w) for v, w in itertools.combinations(points, 2)]\n",
" edges.sort(key=lambda p: squared_distance(*p)) # *p ist hier wie p[0], p[1]\n",
" return edges\n",
"\n",
"def filter_edges(edges, max_sq_length):\n",
" return [e for e in edges if squared_distance(*e) <= max_sq_length]"
]
},
{
"cell_type": "markdown",
"id": "a8dcce0a-3b70-4862-b53e-da059cc5ac29",
"metadata": {},
"source": [
"## Zeichnen von Lösungen"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f436c90b-a091-49e4-8c80-aa6bdd929024",
"metadata": {},
"outputs": [],
"source": [
"def draw_edges(edges):\n",
" \"\"\"\n",
" Malt eine gegebene Liste von Kanten als Graph.\n",
" Die längste Kante wird dabei hervorgehoben (rot, dicker) dargestellt.\n",
" \"\"\"\n",
" points = set([e[0] for e in edges] + [e[1] for e in edges])\n",
" draw_graph = nx.empty_graph()\n",
" draw_graph.add_nodes_from(points)\n",
" draw_graph.add_edges_from(edges)\n",
" g_edges = draw_graph.edges()\n",
" max_length = max((squared_distance(*e) for e in g_edges))\n",
" color = [('red' if squared_distance(*e) == max_length else 'black') for e in g_edges]\n",
" width = [(1.0 if squared_distance(*e) == max_length else 0.5) for e in g_edges]\n",
" plt.clf()\n",
" fig, ax = plt.gcf(), plt.gca()\n",
" fig.set_size_inches(7,7)\n",
" ax.set_aspect(1.0)\n",
" nx.draw_networkx(draw_graph, pos={p: p for p in points}, node_size=8,\n",
" with_labels=False, edgelist=g_edges, edge_color=color, width=width, ax=ax)\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "ea3eb541-29f5-41ad-b1da-b5bc3b3b8fe9",
"metadata": {},
"source": [
"## Greedy-Heuristik\n",
"Genau wie bei SAT."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ce48e10e-4a97-4396-864a-3e7efaa4a8fa",
"metadata": {},
"outputs": [],
"source": [
"class GreedyDBST:\n",
" \"\"\"\n",
" Löse Degree-Constrained Bottleneck Spanning Tree mit einer Greedy-Heuristik.\n",
" Geht durch die (aufsteigend nach Länge sortierte) Liste der möglichen Kanten,\n",
" und fügt eine Kante ein, wenn das vom Grad her noch geht und die Endpunkte\n",
" noch nicht in derselben Zusammenhangskomponente sind (im Prinzip wie Kruskal).\n",
" \"\"\"\n",
" def __init__(self, points, degree):\n",
" self.points = points\n",
" self.all_edges = all_edges(points)\n",
" self._component_of = {v: v for v in points}\n",
" self.degree = degree\n",
" \n",
" def __component_root(self, v):\n",
" cof = self._component_of[v]\n",
" if cof != v:\n",
" cof = self.__component_root(cof)\n",
" self._component_of[v] = cof\n",
" return cof\n",
" \n",
" def __merge_if_not_same_component(self, v, w):\n",
" cv = self.__component_root(v)\n",
" cw = self.__component_root(w)\n",
" if cv != cw:\n",
" self._component_of[cw] = cv\n",
" return True\n",
" return False\n",
" \n",
" def solve(self):\n",
" edges = []\n",
" degree = {v: 0 for v in self.points}\n",
" n = len(self.points)\n",
" m = 0\n",
" for v,w in self.all_edges:\n",
" if degree[v] < self.degree and degree[w] < self.degree:\n",
" if self.__merge_if_not_same_component(v,w):\n",
" edges.append((v,w))\n",
" degree[v] += 1\n",
" degree[w] += 1\n",
" m += 1\n",
" if m == n-1:\n",
" self.max_sq_length = squared_distance(v,w)\n",
" print(f\"Bottleneck bei Greedy: {math.sqrt(self.max_sq_length)}\")\n",
" break\n",
" return edges"
]
},
{
"cell_type": "markdown",
"id": "84d4ae29-bade-4b66-b9cd-15a39971b340",
"metadata": {},
"source": [
"## Eigentlicher Solver"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e55fe5d3-2098-4e71-a393-bab221a4bc6d",
"metadata": {},
"outputs": [],
"source": [
"class DBSTSolverIP:\n",
" def __make_vars(self):\n",
" # Erzeuge binäre Variablen (vtype=grb.GRB.BINARY) für die Kanten\n",
" self.bnvars = {e: self.model_bottleneck.addVar(lb=0, ub=1, vtype=grb.GRB.BINARY)\n",
" for e in self.all_edges}\n",
" # Erzeuge eine nicht ganzzahlige Variable (vtype=grb.GRB.CONTINUOUS) fürs Bottleneck\n",
" self.l = self.model_bottleneck.addVar(lb=0,\n",
" ub=squared_distance(*self.all_edges[-1]),\n",
" vtype=grb.GRB.CONTINUOUS)\n",
" \n",
" def __add_degree_bounds(self, model, varmap):\n",
" for v in self.points:\n",
" edgevars = 0\n",
" for e in self.edges_of[v]:\n",
" if e in varmap:\n",
" edgevars += varmap[e]\n",
" model.addConstr(edgevars >= 1)\n",
" model.addConstr(edgevars <= self.degree)\n",
" \n",
" def __add_total_edges(self, model, varmap):\n",
" model.addConstr(sum(varmap.values()) == len(self.points)-1)\n",
"\n",
" def __make_edges(self):\n",
" edges_of = {p: [] for p in self.points}\n",
" for e in self.all_edges:\n",
" edges_of[e[0]].append(e)\n",
" edges_of[e[1]].append(e)\n",
" return edges_of\n",
" \n",
" def __add_bottleneck_constraints(self):\n",
" for e, x_e in self.bnvars.items():\n",
" self.model_bottleneck.addConstr(self.l >= squared_distance(*e) * x_e)\n",
" \n",
" def __get_integral_solution(self, model, varmap):\n",
" \"\"\"\n",
" Bestimmt den Graph, der durch die aktuelle ganzzahlige Zwischenlösung gebildet wird.\n",
" \"\"\"\n",
" variables = [x_e for e, x_e in varmap.items()]\n",
" values = model.cbGetSolution(variables)\n",
" graph = nx.empty_graph()\n",
" graph.add_nodes_from(self.points)\n",
" for i, (e, x_e) in enumerate(varmap.items()):\n",
" # x_e = v in der aktuellen Lösung\n",
" v = values[i]\n",
" if v >= 0.5: # die Werte sind nicht unbedingt immer exakt genau 0 oder 1 (Numerik)\n",
" graph.add_edge(e[0], e[1])\n",
" return graph\n",
" \n",
" def __forbid_component(self, model, varmap, component):\n",
" \"\"\"\n",
" Verbiete die Komponente component, indem erzwungen wird,\n",
" dass wenigstens eine Kante über den Rand der Komponente gewählt werden muss.\n",
" \"\"\"\n",
" crossing_edges = 0\n",
" for v in component:\n",
" for e in self.edges_of[v]:\n",
" if e in varmap:\n",
" target = e[0] if e[0] != v else e[1]\n",
" if target not in component:\n",
" crossing_edges += varmap[e]\n",
" # Das eigentliche Constraint wird statt mit addConstr über cbLazy eingefügt.\n",
" model.cbLazy(crossing_edges >= 1)\n",
" \n",
" def __callback_integral(self, model, varmap):\n",
" # Hier müssen wir überprüfen, ob die Lösung zusammenhängend ist.\n",
" # Falls das nicht der Fall ist, müssen wir zusätzliche Bedingungen hinzufügen,\n",
" # die die aktuelle Lösung verbieten.\n",
" graph = self.__get_integral_solution(model, varmap)\n",
" for component in nx.connected_components(graph):\n",
" if len(component) == len(self.points):\n",
" # Die Komponente enthält alle Knoten,\n",
" # der Graph ist also zusammenhängend\n",
" return\n",
" self.__forbid_component(model, varmap, component)\n",
"\n",
" def __callback_fractional(self, model, varmap):\n",
" # hier müssen wir streng genommen nichts tun;\n",
" # es gibt allerdings Dinge die wir tun können,\n",
" # die die Suche beschleunigen können.\n",
" # Die aktuelle Lösung erhalten wir über die Methode\n",
" # model.cbGetNodeRel(Liste der Variablen).\n",
" # Sie kann nicht-ganzzahlige Werte für die Variablen enthalten,\n",
" # die eigentlich ganzzahlig sein sollten.\n",
" pass\n",
"\n",
" def callback(self, where, model, varmap):\n",
" if where == grb.GRB.Callback.MIPSOL:\n",
" # wir haben eine ganzzahlige Zwischenlösung\n",
" self.__callback_integral(model, varmap)\n",
" elif where == grb.GRB.Callback.MIPNODE and \\\n",
" model.cbGet(grb.GRB.Callback.MIPNODE_STATUS) == grb.GRB.OPTIMAL:\n",
" # wir haben eine nicht-ganzzahlige Zwischenlösung\n",
" self.__callback_fractional(model, varmap)\n",
"\n",
" def __init__(self, points, edges, degree):\n",
" self.points = points\n",
" self.all_edges = edges\n",
" self.degree = degree\n",
" self.edges_of = self.__make_edges()\n",
" self.model_bottleneck = grb.Model() # Das IP-Modell für das min Bottleneck\n",
" self.model_minsum = grb.Model()\n",
" self.remaining_edges = None\n",
" self.msvars = None\n",
" self.__make_vars()\n",
" self.__add_degree_bounds(self.model_bottleneck, self.bnvars)\n",
" self.__add_total_edges(self.model_bottleneck, self.bnvars)\n",
" self.__add_bottleneck_constraints()\n",
" # Wir müssen vorher ankündigen, dass wir Lazy Constraints nutzen.\n",
" # Sonst macht der Solver möglicherweise Optimierungen, die nur zulässig sind,\n",
" # wenn er alle Constraints vorher kennt, und wir bekommen eine Exception.\n",
" self.model_bottleneck.Params.lazyConstraints = 1\n",
" # Setze die Zielfunktion\n",
" self.model_bottleneck.setObjective(self.l, grb.GRB.MINIMIZE)\n",
" \n",
" def __init_minsum_model(self):\n",
" # Erzeuge binäre Variablen (vtype=grb.GRB.BINARY) für die Kanten\n",
" self.msvars = {e: self.model_minsum.addVar(lb=0, ub=1, vtype=grb.GRB.BINARY)\n",
" for e in self.remaining_edges}\n",
" self.__add_degree_bounds(self.model_minsum, self.msvars)\n",
" self.__add_total_edges(self.model_minsum, self.msvars)\n",
" self.model_minsum.Params.lazyConstraints = 1\n",
" obj = sum((math.sqrt(squared_distance(*e)) * x_e for e, x_e in self.msvars.items()))\n",
" self.model_minsum.setObjective(obj, grb.GRB.MINIMIZE)\n",
" \n",
" def __solve_bottleneck(self):\n",
" # Finde optimales Bottleneck\n",
" cb_bn = lambda model, where: self.callback(where, model, self.bnvars)\n",
" self.model_bottleneck.optimize(cb_bn)\n",
" if self.model_bottleneck.status != grb.GRB.OPTIMAL:\n",
" raise RuntimeError(\"Unerwarteter Status nach Optimierung!\")\n",
" sqlen = int(round(self.model_bottleneck.objVal))\n",
" print(f\"Optimales Bottleneck: {math.sqrt(sqlen)}\")\n",
" self.remaining_edges = filter_edges(self.all_edges, sqlen)\n",
" self.__init_minsum_model()\n",
" \n",
" def __solve_minsum(self):\n",
" # Finde optimalen Baum\n",
" cb_ms = lambda model, where: self.callback(where, model, self.msvars)\n",
" self.model_minsum.optimize(cb_ms)\n",
" if self.model_bottleneck.status != grb.GRB.OPTIMAL:\n",
" raise RuntimeError(\"Unerwarteter Status nach Optimierung!\")\n",
" # Gib alle Kanten mit Wert >= 0.5 zurück\n",
" # (es gibt numerische Gründe für >= 0.5 statt == 1)\n",
" return [e for e, x_e in self.msvars.items() if x_e.x >= 0.5]\n",
" \n",
" def solve(self):\n",
" self.__solve_bottleneck()\n",
" return self.__solve_minsum()\n",
"\n",
" \n",
"def solve(points, degree):\n",
" greedy = GreedyDBST(points, degree)\n",
" greedy_sol = greedy.solve()\n",
" remaining_edges = filter_edges(greedy.all_edges, greedy.max_sq_length)\n",
" ip = DBSTSolverIP(points, remaining_edges, degree)\n",
" return ip.solve()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "781aa3bb-c937-4167-ac46-3d4baeb64386",
"metadata": {},
"outputs": [],
"source": [
"points = random_points(100)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "59292449-026c-409d-a002-0ede0433a892",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Bottleneck bei Greedy: 1918.5955801054063\n",
"Changed value of parameter lazyConstraints to 1\n",
" Prev: 0 Min: 0 Max: 1 Default: 0\n",
"Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (mac64)\n",
"Thread count: 4 physical cores, 8 logical processors, using up to 8 threads\n",
"Optimize a model with 670 rows, 470 columns and 3283 nonzeros\n",
"Model fingerprint: 0xfa4262eb\n",
"Variable types: 1 continuous, 469 integer (469 binary)\n",
"Coefficient statistics:\n",
" Matrix range [1e+00, 4e+06]\n",
" Objective range [1e+00, 1e+00]\n",
" Bounds range [1e+00, 4e+06]\n",
" RHS range [1e+00, 1e+02]\n",
"Presolve removed 479 rows and 3 columns\n",
"Presolve time: 0.00s\n",
"Presolved: 191 rows, 467 columns, 2315 nonzeros\n",
"Variable types: 0 continuous, 467 integer (467 binary)\n",
"\n",
"Root relaxation: objective 3.681009e+06, 81 iterations, 0.00 seconds\n",
"\n",
" Nodes | Current Node | Objective Bounds | Work\n",
" Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time\n",
"\n",
" 0 0 3681009.00 0 4 - 3681009.00 - - 0s\n",
" 0 0 3681009.00 0 10 - 3681009.00 - - 0s\n",
" 0 0 3681009.00 0 6 - 3681009.00 - - 0s\n",
" 0 2 3681009.00 0 9 - 3681009.00 - - 0s\n",
"* 95 16 7 3681009.0000 3681009.00 0.00% 3.7 0s\n",
"\n",
"Cutting planes:\n",
" Lazy constraints: 212\n",
"\n",
"Explored 160 nodes (792 simplex iterations) in 0.21 seconds\n",
"Thread count was 8 (of 8 available processors)\n",
"\n",
"Solution count 1: 3.68101e+06 \n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 3.681009000000e+06, best bound 3.681009000000e+06, gap 0.0000%\n",
"\n",
"User-callback calls 513, time in user-callback 0.10 sec\n",
"Optimales Bottleneck: 1918.5955801054063\n",
"Changed value of parameter lazyConstraints to 1\n",
" Prev: 0 Min: 0 Max: 1 Default: 0\n",
"Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (mac64)\n",
"Thread count: 4 physical cores, 8 logical processors, using up to 8 threads\n",
"Optimize a model with 201 rows, 469 columns and 2345 nonzeros\n",
"Model fingerprint: 0x70c3c96d\n",
"Variable types: 0 continuous, 469 integer (469 binary)\n",
"Coefficient statistics:\n",
" Matrix range [1e+00, 1e+00]\n",
" Objective range [7e+01, 2e+03]\n",
" Bounds range [1e+00, 1e+00]\n",
" RHS range [1e+00, 1e+02]\n",
"Presolve removed 10 rows and 2 columns\n",
"Presolve time: 0.00s\n",
"Presolved: 191 rows, 467 columns, 2315 nonzeros\n",
"Variable types: 0 continuous, 467 integer (467 binary)\n",
"\n",
"Root relaxation: objective 5.972984e+04, 43 iterations, 0.00 seconds\n",
"\n",
" Nodes | Current Node | Objective Bounds | Work\n",
" Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time\n",
"\n",
" 0 0 61746.6735 0 4 - 61746.6735 - - 0s\n",
" 0 0 62518.5506 0 31 - 62518.5506 - - 0s\n",
" 0 0 63093.9798 0 18 - 63093.9798 - - 0s\n",
" 0 0 63101.1671 0 24 - 63101.1671 - - 0s\n",
" 0 0 63163.7378 0 24 - 63163.7378 - - 0s\n",
" 0 0 63229.2871 0 22 - 63229.2871 - - 0s\n",
" 0 0 63416.3201 0 29 - 63416.3201 - - 0s\n",
" 0 0 63477.7205 0 24 - 63477.7205 - - 0s\n",
" 0 0 63477.7205 0 24 - 63477.7205 - - 0s\n",
" 0 2 63477.7205 0 24 - 63477.7205 - - 0s\n",
" 13989 11783 66129.3988 36 22 - 65705.9009 - 7.5 5s\n",
" 32481 28680 66830.5284 50 24 - 65818.3099 - 7.1 10s\n",
"*47132 34865 176 68988.462661 65877.2869 4.51% 6.9 14s\n",
"*47304 32206 163 68665.783639 65878.7705 4.06% 6.9 14s\n",
" 47724 32436 66672.7919 44 36 68665.7836 65879.3386 4.06% 6.9 15s\n",
"H52126 34290 68519.316465 65924.1302 3.79% 6.9 18s\n",
" 55615 37343 68002.5391 112 17 68519.3165 65954.6783 3.74% 6.8 20s\n",
"*61582 41868 145 68504.459351 65997.3165 3.66% 6.8 21s\n",
"*64851 43648 162 68460.083559 66014.3888 3.57% 6.8 23s\n",
"*66873 40569 162 68235.596512 66023.3597 3.24% 6.8 23s\n",
" 69484 42547 68118.4221 85 10 68235.5965 66036.0005 3.22% 6.8 25s\n",
" 80057 50350 67721.8180 59 26 68235.5965 66077.6498 3.16% 6.9 30s\n",
"*84611 51830 153 68175.720226 66093.4232 3.05% 6.9 31s\n",
"H85401 48076 68024.408069 66095.3386 2.84% 6.9 32s\n",
"H85403 43207 67863.666742 66095.3386 2.61% 6.9 32s\n",
" 89897 46152 66396.3244 48 30 67863.6667 66110.6463 2.58% 7.1 35s\n",
" 101144 53573 66674.3675 43 33 67863.6667 66151.7900 2.52% 7.2 40s\n",
" 110719 59620 66641.0387 38 28 67863.6667 66182.7708 2.48% 7.4 45s\n",
" 120936 66190 67846.4741 70 30 67863.6667 66207.1812 2.44% 7.5 50s\n",
" 130741 72428 66884.7414 44 33 67863.6667 66227.6028 2.41% 7.6 55s\n",
" 139537 77646 66725.4563 49 29 67863.6667 66245.4110 2.38% 7.6 60s\n",
" 149414 84093 66286.9973 42 20 67863.6667 66263.1922 2.36% 7.7 65s\n",
" 159746 90710 66859.3623 48 29 67863.6667 66281.2011 2.33% 7.7 70s\n",
" 170741 97553 67802.2334 68 16 67863.6667 66297.6467 2.31% 7.8 75s\n",
" 179778 103229 67474.5691 53 23 67863.6667 66310.6496 2.29% 7.8 80s\n",
" 187823 108012 cutoff 61 67863.6667 66323.1588 2.27% 7.9 85s\n",
" 198472 114680 67837.5683 74 18 67863.6667 66338.2120 2.25% 7.9 90s\n",
" 207922 120352 67180.5998 62 34 67863.6667 66348.5893 2.23% 7.9 95s\n",
" 218108 126631 67788.3817 56 24 67863.6667 66360.4202 2.22% 8.0 100s\n",
" 228110 132784 67425.9132 57 22 67863.6667 66372.4288 2.20% 8.0 105s\n",
" 237391 138090 67842.7904 62 28 67863.6667 66382.3153 2.18% 8.0 110s\n",
" 247774 144560 cutoff 56 67863.6667 66392.0133 2.17% 8.0 115s\n",
" 258668 150698 66860.2231 46 37 67863.6667 66402.2850 2.15% 8.0 120s\n",
" 268963 156934 66858.6619 49 24 67863.6667 66411.0660 2.14% 8.1 125s\n",
" 279521 163328 67780.4331 71 27 67863.6667 66420.3515 2.13% 8.1 130s\n",
" 289048 169074 67837.7662 92 10 67863.6667 66427.5097 2.12% 8.1 135s\n",
" 298862 174454 66719.2552 46 25 67863.6667 66436.3046 2.10% 8.1 140s\n",
" 309177 180282 66870.6044 51 30 67863.6667 66445.1786 2.09% 8.1 145s\n",
" 319370 186203 67192.0818 47 25 67863.6667 66453.0699 2.08% 8.1 150s\n",
" 328341 191606 66948.6978 52 30 67863.6667 66459.5273 2.07% 8.1 155s\n",
" 337895 197335 67252.2607 51 27 67863.6667 66466.8054 2.06% 8.1 160s\n",
" 345957 202051 67796.8851 61 22 67863.6667 66472.1832 2.05% 8.2 165s\n",
" 354162 206418 67119.2330 53 26 67863.6667 66477.3105 2.04% 8.2 170s\n",
" 364558 212426 cutoff 76 67863.6667 66484.5359 2.03% 8.2 175s\n",
" 373702 217764 67003.8116 42 37 67863.6667 66490.1937 2.02% 8.2 180s\n",
" 383966 223351 67862.3428 59 29 67863.6667 66496.0227 2.02% 8.2 185s\n",
" 393657 228974 66641.1384 42 33 67863.6667 66501.9187 2.01% 8.2 190s\n",
" 403303 234511 67798.8709 61 21 67863.6667 66507.1843 2.00% 8.2 195s\n",
" 412405 240051 cutoff 53 67863.6667 66511.9182 1.99% 8.2 200s\n",
" 423565 246087 67304.7863 53 26 67863.6667 66518.9137 1.98% 8.2 205s\n",
" 431540 250764 67730.8589 61 16 67863.6667 66522.8526 1.98% 8.2 210s\n",
" 441903 256546 67734.5477 58 28 67863.6667 66528.7026 1.97% 8.3 215s\n",
" 451784 262173 66779.8146 47 22 67863.6667 66533.7323 1.96% 8.3 220s\n",
" 461370 267737 66941.8361 48 22 67863.6667 66539.0286 1.95% 8.3 225s\n",
" 469062 272112 67785.3625 58 28 67863.6667 66542.3430 1.95% 8.3 230s\n",
" 477718 276589 cutoff 60 67863.6667 66546.6307 1.94% 8.3 235s\n",
" 488051 282223 67313.5073 47 24 67863.6667 66551.8927 1.93% 8.3 240s\n",
" 497544 287387 66921.2946 48 33 67863.6667 66556.4581 1.93% 8.3 245s\n",
" 508203 293158 67796.4045 101 8 67863.6667 66561.3618 1.92% 8.3 250s\n",
" 518393 298716 67248.8757 54 24 67863.6667 66565.9799 1.91% 8.3 255s\n",
" 529108 304600 67615.4199 80 19 67863.6667 66570.6083 1.91% 8.3 260s\n",
"H535464 297079 67784.689665 66573.3974 1.79% 8.3 262s\n",
" 538815 299063 67695.9477 59 28 67784.6897 66574.8928 1.78% 8.3 265s\n",
" 550140 304731 67667.0679 73 16 67784.6897 66579.7281 1.78% 8.3 270s\n",
" 559806 309622 cutoff 59 67784.6897 66583.8284 1.77% 8.3 275s\n",
" 568609 314341 67496.4582 64 16 67784.6897 66587.6917 1.77% 8.3 280s\n",
" 579343 319661 67165.2797 44 22 67784.6897 66591.9865 1.76% 8.3 285s\n",
" 586782 323612 67606.9428 50 24 67784.6897 66594.6446 1.76% 8.3 290s\n",
" 596539 328515 66776.9128 37 37 67784.6897 66598.6566 1.75% 8.3 295s\n",
" 605886 333228 67494.9097 50 34 67784.6897 66602.0400 1.74% 8.4 300s\n",
" 614208 337523 67098.5197 57 34 67784.6897 66605.3128 1.74% 8.4 305s\n",
" 624352 342496 67765.1763 64 25 67784.6897 66609.5331 1.73% 8.4 310s\n",
" 632726 346275 66996.8894 45 24 67784.6897 66612.3531 1.73% 8.4 315s\n",
" 641769 351496 67432.0755 53 28 67784.6897 66615.8808 1.72% 8.4 320s\n",
" 650441 355747 67421.2660 57 27 67784.6897 66619.0160 1.72% 8.4 325s\n",
" 659373 360028 67597.3593 54 29 67784.6897 66622.2971 1.71% 8.4 330s\n",
" 669447 364873 66645.5133 49 32 67784.6897 66625.7582 1.71% 8.4 335s\n",
" 678667 369480 67397.4325 69 17 67784.6897 66629.1211 1.70% 8.4 340s\n",
" 688461 374183 cutoff 69 67784.6897 66632.5108 1.70% 8.4 345s\n",
" 698414 379143 67452.6379 49 16 67784.6897 66635.7282 1.70% 8.4 350s\n",
" 707177 383254 67392.0473 58 30 67784.6897 66638.6710 1.69% 8.4 355s\n",
" 717031 388218 67627.5640 57 21 67784.6897 66641.7969 1.69% 8.4 360s\n",
" 726812 392990 67127.1787 44 29 67784.6897 66644.7668 1.68% 8.4 365s\n",
" 734957 396990 66884.4227 51 27 67784.6897 66647.3006 1.68% 8.4 370s\n",
" 745094 401944 66861.8459 43 26 67784.6897 66650.4592 1.67% 8.4 375s\n",
" 754690 406460 67644.8363 50 28 67784.6897 66653.2871 1.67% 8.4 380s\n",
" 763596 410586 66875.1284 53 30 67784.6897 66655.8379 1.67% 8.4 385s\n",
" 771708 414403 67778.0212 77 - 67784.6897 66657.9596 1.66% 8.4 390s\n",
" 781389 419259 67485.2281 57 22 67784.6897 66661.0186 1.66% 8.4 395s\n",
" 790444 423901 66860.8818 43 24 67784.6897 66663.3930 1.65% 8.4 400s\n",
" 800128 428516 67462.7277 65 25 67784.6897 66666.4175 1.65% 8.4 405s\n",
" 809103 432946 67417.2201 65 30 67784.6897 66668.8959 1.65% 8.4 410s\n",
" 819067 437572 67317.8637 48 30 67784.6897 66671.5111 1.64% 8.4 415s\n",
" 828144 441808 67465.8577 48 28 67784.6897 66674.1792 1.64% 8.4 420s\n",
" 837387 446188 cutoff 57 67784.6897 66676.7831 1.63% 8.4 425s\n",
" 847111 450722 67049.1391 65 31 67784.6897 66679.3620 1.63% 8.4 430s\n",
" 856121 454368 67568.8117 59 37 67784.6897 66681.6587 1.63% 8.4 435s\n",
" 863981 458543 66794.3141 44 24 67784.6897 66683.6780 1.62% 8.4 440s\n",
" 871516 462498 67240.8740 50 35 67784.6897 66685.6293 1.62% 8.4 445s\n",
" 880488 466848 66954.9609 49 34 67784.6897 66688.0161 1.62% 8.4 450s\n",
" 889393 470976 cutoff 74 67784.6897 66690.2413 1.61% 8.4 455s\n",
" 898165 475313 67555.6473 54 20 67784.6897 66692.6947 1.61% 8.4 460s\n",
" 906586 479062 67534.8714 48 28 67784.6897 66694.7366 1.61% 8.4 465s\n",
" 915749 483082 cutoff 69 67784.6897 66697.0031 1.60% 8.4 470s\n",
" 926078 488205 67070.9066 49 24 67784.6897 66699.5702 1.60% 8.4 475s\n",
" 935253 492198 67725.6254 66 20 67784.6897 66701.7236 1.60% 8.4 480s\n",
" 945325 497051 cutoff 60 67784.6897 66704.1504 1.59% 8.4 485s\n",
" 954390 501068 cutoff 61 67784.6897 66706.3393 1.59% 8.4 490s\n",
" 962248 504946 67614.3996 55 21 67784.6897 66708.2850 1.59% 8.4 495s\n",
" 971715 509358 66957.9452 54 40 67784.6897 66710.2605 1.59% 8.4 500s\n",
" 980848 513606 66926.3920 50 33 67784.6897 66712.1928 1.58% 8.5 505s\n",
" 990919 518203 66930.8350 64 18 67784.6897 66714.4064 1.58% 8.5 510s\n",
" 999655 522451 67583.7692 54 30 67784.6897 66716.3361 1.58% 8.5 515s\n",
" 1009960 527254 66779.5980 53 22 67784.6897 66718.7894 1.57% 8.5 520s\n",
" 1018714 531257 67604.9369 49 28 67784.6897 66720.6244 1.57% 8.5 525s\n",
" 1029256 536217 67575.8578 67 23 67784.6897 66722.9874 1.57% 8.5 530s\n",
" 1038070 540212 67484.0551 49 25 67784.6897 66725.1376 1.56% 8.5 535s\n",
" 1046963 544279 67557.8589 50 27 67784.6897 66727.0296 1.56% 8.5 540s\n",
" 1056617 548652 67705.4197 50 28 67784.6897 66729.1094 1.56% 8.5 545s\n",
" 1065680 553031 67442.4064 46 33 67784.6897 66730.9509 1.55% 8.5 550s\n",
" 1075906 556911 67617.4918 57 17 67784.6897 66732.9121 1.55% 8.5 555s\n",
" 1083686 560542 67501.4524 44 22 67784.6897 66734.6312 1.55% 8.5 560s\n",
" 1092550 564611 66972.3803 46 26 67784.6897 66736.4920 1.55% 8.5 565s\n",
" 1101138 568463 66879.7430 49 42 67784.6897 66738.3822 1.54% 8.5 570s\n",
" 1111415 573316 67757.5137 51 31 67784.6897 66740.5307 1.54% 8.5 575s\n",
" 1121516 577410 67420.7498 57 36 67784.6897 66742.5390 1.54% 8.5 580s\n",
" 1129342 581389 67103.7967 52 30 67784.6897 66744.1504 1.54% 8.5 585s\n",
" 1139868 586028 infeasible 81 67784.6897 66746.1716 1.53% 8.5 590s\n",
" 1148934 590174 67319.3366 56 25 67784.6897 66748.1318 1.53% 8.5 595s\n",
" 1158192 594272 cutoff 58 67784.6897 66750.0772 1.53% 8.5 600s\n",
" 1168133 598734 67513.6080 53 38 67784.6897 66751.7291 1.52% 8.5 605s\n",
" 1177001 602595 66990.5419 45 30 67784.6897 66753.5064 1.52% 8.5 610s\n",
" 1187346 607029 67154.9855 49 28 67784.6897 66755.5167 1.52% 8.5 615s\n",
" 1195292 610720 67130.1296 44 25 67784.6897 66756.9031 1.52% 8.5 620s\n",
" 1203615 614689 67354.3427 49 21 67784.6897 66758.4882 1.51% 8.5 625s\n",
" 1213052 618807 67417.4784 47 24 67784.6897 66760.1294 1.51% 8.5 630s\n",
" 1222255 622795 67751.0029 48 23 67784.6897 66761.9021 1.51% 8.5 635s\n",
" 1231486 626723 67480.8947 42 27 67784.6897 66763.5594 1.51% 8.5 640s\n",
" 1241709 631329 cutoff 58 67784.6897 66765.4754 1.50% 8.5 645s\n",
" 1250954 635429 67023.0770 52 22 67784.6897 66767.0901 1.50% 8.5 650s\n",
" 1260949 639600 67598.1456 56 20 67784.6897 66768.9355 1.50% 8.5 655s\n",
" 1270337 643781 67534.4962 54 25 67784.6897 66770.5326 1.50% 8.5 660s\n",
" 1279183 647704 67473.1291 52 24 67784.6897 66772.1859 1.49% 8.5 665s\n",
" 1287942 651570 cutoff 50 67784.6897 66773.7986 1.49% 8.5 670s\n",
"\n",
"Cutting planes:\n",
" Gomory: 8\n",
" MIR: 27\n",
" Flow cover: 27\n",
" Zero half: 62\n",
" Lazy constraints: 2825\n",
"\n",
"Explored 1289942 nodes (10940722 simplex iterations) in 671.10 seconds\n",
"Thread count was 8 (of 8 available processors)\n",
"\n",
"Solution count 10: 67784.7 67863.7 68024.4 ... 68988.5\n",
"\n",
"Solve interrupted\n",
"Best objective 6.778468966455e+04, best bound 6.677416308379e+04, gap 1.4908%\n",
"\n",
"User-callback calls 2603210, time in user-callback 10.39 sec\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAGRCAYAAACg1F5qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdUFOcaBvBntlEEFAQUKyJqEERFsGKJvRF7jzG2FGOMmgSVIkUjEbFFTbHEEoO9xWg01iTEhhUbFhB7WUGRBWTb3D8IXLuU3f1mdt/fOTn3JmFnnuDuvvN1jud5EEIIIaUhYR2AEEKI+FExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqcmK88POzs68u7u7kaIQQggRmhMnTjzked7lbT9XrGLi7u6O48ePlzwVIYQQUeE47npRfo66uQghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRNCCCGlRsWEEEJIqVExIYQQUmpUTAghhJQaFRMzl6pUYV3iDaQqVayjEELMWLG2oCfikqpUofvCBOj1PABg/YiG8KnuComEniEIEZpUpQqJaRkIcHeCh4sd6zjFRsXEjCWmZYDngadaPeScHvPjd6C67jZ4nn/u5579e57nYW1tjbJly772L3t7e0ilUlP/5xBitgoe/Hge4Djg97GBoisoVEzMWIC7EzgOsJFLwXFShH40oEhv0KdPnyIzM/O5v65cuVL4/7OysqDX6597DcdxzxUluVz+xoLk4OAAmaz4bz+xP70R8irH0jKg1mig5SWwkUuRmJYhuvc3FRMz5uFih9/HBhb7y9fa2hrW1taoUKFCie+tVqtfKkjXrl0r/P9PnjyBTqd75WsLipJMJnuuAOXK7BF5JA9AfvFaOegdeFZwgFwuh0KhgFwuL3aLiYoTYU2r1eLwtl8glTSAhOeh1+sQ4O7EOlaxUTExcx4udky+JBUKBVxcXODi8tajo19Lo9E8V4y2n08Hz+uh1nOQczqs2JGAutaPoVarodFooFarX2oxvUmm3grbNd6QyWSQSCSi7Fog4qZSqRAaGooxY8bgC6fKOJaWgT2//gD38l1YRys2KiZEsORyOZydneHs7AwAKFdVhXVXEyDlAY6T4usPe5Xqy39d4g3s2n4euRo9rOW8KLsWiHjduXMH33zzDSIiIuDq6gog/+GvmiYI69atw6BBgxgnLB4qJkQ0Stpt9zr5Y0ocbOQSqNVq+FaiQkJM4+zZs1i+fDni4uJgY2Pz3L9r3rw5Nm3ahD59+kChUDBKWHzcizN73sTf358/fvy4EeMQYloFYyZVbTTYsGwh4uLiaKbaC2hcybD27NmDI0eOIDQ09LXT9C9evIgDBw5gzJgxJk73Mo7jTvA87/+2n6OWCbFoz44plR01ClFRUYiKigLHcYyTCUOqUoVuCxIAiHfKqpCsWLECGo0G4eHhb/w5Ly8vrF69Gk+ePIGDg4OJ0pUOrV4j5D/e3t5o3749vvvuO9ZRBCMxLQM6nQ65Gh14Pv/vSfHp9XrExMTAxcUFo0ePLtJrxowZg++//97IyQyHigkhz2jVqhWqVKmC+Ph41lEEIcDdCTKZFAoJD61WI8opq6w9ffoUwcHB6NSpE7p161bk11WuXBk6nQ737t0zYjrDoWJCyAv69OmDJ0+eYM+ePayjMFcw6WFaT1+Mq5ODo3u3s44kKunp6fjyyy/xxRdfwM/Pr9iv/+yzz7Bo0SIjJDM80RYT2sCQGNMnn3yCI0eO4NSpU6yjMOfhYocBAdXw+bAByMvLw5YtW1hHEoWrV68iMjISMTExqFq1aomuUa5cObi4uODy5csGTmd4oiwmqUoVui/4B5G/nUf3hQlUUIhRhIaGIj4+HmlpaayjCMaHH36Ie/fu4Y8//mAdRdAOHTqEn3/+GXPmzCn1APpHH32EJUuWGCiZ8YiymCSmZYDXapGr1YPneRoUJEYhkUjwzTffIC4uDunp6azjCMann36K5ORkHDx4kHUUQdq4cSOOHj2Kb775BnK5vNTXs7a2hq+vL44dO2aAdMYjymIS4O4ETi6HjV4DTq2mQUFiNAqFAjNmzMDUqVORm5vLOo5gTJgwAYcOHcKRI0dYRxGEVKUKaxNvIGrOD9DpdJgwYYJBp5cPHjwY8fHxL+34LSSiLCYFg4KR3evi971x8Ni2lnUkYsYcHBwQGhqKKVOmvHZzSks0ZcoU/PHHHxY/rpTf7Z6A0M2nEZ9RDQFtiz5jq6ikUik6duyI3bt3G/zahiLKYgL8NyjYsjY8fl0KhIQAhw+zjkTMWKVKlfDxxx8jMjJS0E+HpsRxHCIiIrB+/XpcvHiRdRxmEtMyoNProIMUEonUaN3uXbp0wa5du4q1makpibaYFKpTB/j5Z6BfP+DOHdZpiBnz8vJC586dMX/+fNZRBEMikWD69OlYtmwZUlJSWMdhIsDdCVKp9L9zg2C0bneO4wq7u4RI/MUEALp3Bz75BOjbF8jLY52GmLEWLVrA3d0dq1evZh1FMKRSKWJiYrBgwQLcvHmTdRyTK+x2D6pr9O1mGjdujNOnT+Pp06dGu0dJmUcxAfK7uipWBMaNY52EmLmePXsiNzdX0P3XpiaXy/Htt98iNjZWNCu2DalgLY4p9i0T6lRh8ykmEgmwciWQkAAsXsw6DTFzo0ePxokTJ3DixAnWUQTD2toa3377LaZNm0ZTqY2odu3auH//PjIzM1lHeY75FBMAsLcHtm4FwsKAQ4dYpyFmbsqUKVi/fj1SU1NZRxGMMmXKICYmBlOnThXcl505EeI2K+ZVTACgVi1gxQoakCdGx3Ecpk+fjnnz5uHhw4es4wiGg4MDpk2bhpCQEGRnZ7OOY5bc3NzAcRzuCOg7zvyKCQB07Qp89hnQpw8NyBOjksvlhUev5uTksI4jGE5OTpg6dSomT54syMFicyC01ol5FhMAmDIFqFwZGDsWoHUBxIjs7e0RHh6OkJAQaLVa1nEEo0KFCggODsakSZOg0WhYxzE7Dg4OqFSpEpKTk1lHAWDOxYTj8ru7Dh8GfvqJdRpi5ipWrIhPP/0UERERtKjxGVWrVsW4ceMwefJk2j3ACEaNGoWlS5eyjgHAnIsJANjZ5Q/IR0Tkz/IixIjq1KmDoKAgzJkzh3UUQalZsyZGjhyJ0NBQwa7eFisrKyv4+fnhsAB2ADHvYgIAnp75U4b79wdu3WKdhpi5pk2bonbt2li5ciXrKIJSt25dDBw4EFFRUdRyM7CBAwdi7dq1zH+v5l9MAKBz5/zFjH36ADQYSIwsKCgIOp0OO3fuZB1FUBo0aIAuXbpgxowZzL/4zIlEIkG3bt2wY8cOtjmY3t2UJk0CqlfPn+VFb2RiZCNGjMDZs2eRmJjIOoqgNG3aFC1atMDcuXNZRzErHTp0wN69e5mOS1lOMeG4/A0hExOB779nnYZYgODgYGzevBlXr15lHUVQ2rRpAy8vL3xPn0OD4TgO77//PtM94yynmAD5A/JbtgDR0cDff7NOQ8wcx3GIjo7Gd999hwcPHrCOIyhdunSBm5sb4n5ahXWJN+jobQPw9/fHuXPnmB3iZlnFBABq1gRWrQIGDgQscIdTYlpyuRwzZsxAVFQUVCr6wnxW/cAOWHzdCeFbz6L7wgQqKAbw8ccfYzGjvQktr5gAQKdOwBdf0IA8MQk7OztEREQgJCSEFu89IzEtA1KZDGo9wPO80Q6VsiSenp5IT0/Ho0ePTH5vyywmABAcDNSokX8OCg3IEyNzdXXFuHHjMHXqVJrJ9J8AdydwHGAlBbRandEOlbI0Y8eOZbLNiuUWk4IB+VOngIULWachFsDT0xO9evXCrFmzkKpUWfxYQcGhUtE96qGd5hiqlFWwjmQWXF1dIZfL8e/ZqyZ9j3HFeUry9/fnjx8/bsQ4DKSmAs2aAevXA61bs05DLMDPG3cg5qQeMpkcHAejn84nBufPn8ehQ4cwevRo1lHMwtm0++j101HI5YpSv8c4jjvB87z/237OclsmBTw8gNWr8wfkb9xgnYZYgDLV6wEAcjU68DxorACAt7c3TqXcwS+HUiy6tWYoF5R54GHa9xgVEwDo0AGYOBHo3RtgNK2OWI4AdyfIZDJIoQPHgcYKAKQqVdgvD0D07xdoZpcB1LDTgwNgI5ea7D1GxaTAV1/lH6z18cc0IE+MysPFDjs+bwl/7hq2fNzE4ru4gPwnZ46TQMNLqLVmAH9uWo0NIxshMqiuybpRqZgU4Dhg2TIgKQn47jvWaYiZ83Cxw4T3muD8kQOsowhCwcwuaq2V3qNHj8DzPBp6VsaAgGome1ihYvIsW9v8FfIxMcAB+pAT42rSpAmOHj3KOoYgFMzsaiK9ThMSSmnJkiUYNWqUye9LxeRFNWrkD8gPHgxcv846DTFjHMehUqVKuEVHIwDILyi1ZelUSEpBpVIhKysLbm5uJr83FZNXad8+fwylVy+AzvUmRjR48GDEx8ezjkHMxPLlyzFixAgm96Zi8joTJwJeXsBHH9GAPDEaFxcXpKen0wmEpNTy8vJw584d1KhRg8n9qZi8DscBS5YA588D8+axTkPM2LvvvouDBw+yjkFEbtWqVRg6dCiz+1MxeZOCAfmZM4H9+1mnIWaqQ4cO2LNnD+sYRMS0Wi0uX76MunXrMstAxeRt3N2B+Pj8Afm0NNZpiBmSSqWwt7dnstOr0MhkMtpZuQTWr1+PAQMGMM1AxaQo2rbNP/aXBuSJkQwePBhr1qxhHYM5e3t7OvelmPR6PU6ePAl//7dun2VUVEyKavx4wMcHGDWKBuSJwbm7uyMtLc3it6e3s7NDVlYW6xiisn37dgQFBbGOQcWkyDgOWLwYuHQJmDOHdRpSBGLb5t3Pzw8nT55kHYMpapkUD8/z+Ouvv9CqVSvWUaiYFIuNTf6AfFwcsHcv6zTkDVKVKnRbkICI386LZuPAnj17YuvWraxjMEUtk+LZv38/2rVrB47jWEehYlJs1aoBa9YAQ4YA166xTkNeIzEtAzq9Dk+1etFsHGhtbQ2O45BrwTtX29nZUcukGHbs2IGuXbuyjgGAiknJtGkDhIQAPXsC2dms05BXCHB3Aq/Xw1rGiWrjwL59+2LTpk2sYzBjb29PLZMiOnLkCJo0aSKIVglAxaTkxo0DGjQARo6kAXkB8nCxQzfZOUQEeYtq40BfX18kJSWxjsEMtUyKbuPGjejbty/rGIWomJQUxwE//ghcvZo/hkIExwG5GNS4umgKSYGaNWvi6tWrrGMwQS2ToklKSoK3tzekUinrKIWomJRGwYD8nDnAn3+yTkNeINZptgMHDsTatWtZx2CCWiZF8+uvv2LIkCGsYzyHiklpVa0KrF0LDB0KpKSwTkP+k5eXB4VCwTpGiZQtWxbZ2dnQarWso5icra0tsmkc8o2uXr2KatWqCe79TcXEEFq3BsLC8lfI0wdBEFJSUlCrVi3WMUqsS5cuWLn5D1GtkzEEiUQi2halqSxfvhzDhw9nHeMlVEwMZexYoFEjYMQIGpAXgOTkZLzzzjusY5SYs4c3ZpzUI3L7BdGskyHGd+vWLTg5OcHW1pZ1lJdQMTEUjgN++CF/7UlsLOs0Fu/SpUuoXbs26xjFplarsWTJEkQsXAUAyNXoRLNOhhjf0qVLmRzJWxQy1gHMirU1sHkz0LgxUL8+0Lkz60QWKzc3V5BPb6+j1WoRHx+Pc+fOYdiwYWjXszq6zP8LUp4X1ToZYjxKpRIKhQJly5ZlHeWVqGViaFWqAOvWAcOG5U8bJuQN9Ho91q1bh0mTJsHHxwexsbHw9vaGh4sddoxrBT8+VVTrZIjxLFmyRLCtEoBaJsbRsiUwdWr+CvkjRwA7+iIwJTEM4PI8j+3bt+PAgQPo16/fK8+i8HS1R03uPtzLi6eFRYzjzLV7OJdjDxVnC1fWYV6DWibGMmYM0LgxUkePs7gZOazdu3cPbm5urGO8Es/z+PPPPzFhwgTY2dlh7ty5aN68+Wt/vlGjRha/k7ClS1Wq0HdxIk5yNQU9GYOKibFwHFKnxaF71SCEbz6DbguE+yYwN0KdyfXPP/9gwoQJ0Gg0mDt3Ltq2bfvW13To0AHrdx2kBxILFrdqKziJBE+1vKAnY1A3lxEl3lGBt7aGWqOHVKPGN4vXYdanveDkRIOpxpScnIwePXqwjoFUpQqJaRmwenILf/2+AYGBgZgzZw4kkqI/wymfctisqo3t28+D4zgaP7Ew69atg5ezHAefSCHlIejJGFRMjCjA3Qkcx8FGLgXHSTG657v48ccfkZubiyFDhgjy6dkc3L17l3k3V6pSha7f/Q2NRgupRIKdk6PgWcGh2NdJTMuAVCZFriZ/B+TEtAyzLyYcx4HnecHshsvKrl278PjxY3z+8cfo9t+DSYC7k2D//KmYGJGHix1+Hxv43JugqXcIcnJyEB8fj6VLl6JTp05o3769xX9wDI317zPh0j1oNBroOBkUMilO3HhcomIS4O4EqVQKGwkPjUaD8wd/g7r+R4LbSsOQbG1tkZOTgzJlyrCOwkSqUoU1+xKRfS0ZM6aMB5D/XSLUIlKAiomRvepNYGtri1GjRhUOxgYHB+Odd97B4MGDYWNjwygpMaSTu9dDIW8IcKU7T+XFBxLtozsIDg5Gr1690Lp1awOnFoaCo3stsZikKlXovjABeXlqWFm9g1FKleCLSAEqJgxxHIdOnTqhU6dOuHDhAmbMmAFbW1t8+OGHzLtpxConJ4d5Qd69ezda+NbCuDYtDdI18dwDiUttzJ07F+vWrcPkyZMxceJEuLoKdbJoyRQc3VuhQgXWUUwuMS0DPA/oOCm0Wp2oujWpmAhE3bp1MW3aNKSnp2PFihV4+PAh+vXrBz8/P9bRROXy5ctMt1HJyMjAvn37EPvfljrG+CLgOA4DBw5Ely5dMGfOHFSrVg3Dhw8v1sC+kBW0TCxR/jgrYCOXQK1W453yctaRisw83n1mpHz58vjyyy8RHR2N5ORkfPXVV9iyZQt0Oh3raKJw6dIlphMbYmJiMGXKFJPcq2zZsoiKikL9+vXxxRdf4MyZMya5r7EVtEwsUUG3ZmSQNzaMbITVP8wRxSJcgIqJYMnlcgwePBizZs2Cq6srQkJCsGDBAjx58oR1NEG7cuUKPD09mdx77dq16NSpExwdHU16X39/f8ybNw9HjhxBVFSU6L+ILbllAuQXlAEB1eBXqwo6deqENWvWsI5UJFRMBI7jOLRo0QIzZ85EUFAQ5s2bh8jISKSmprKOJkhqtRpWVlYmv++tW7eQnJyM9u3bm/zeACCVSvHxxx/jo48+wrRp07Bp0ybRPNG+yJJbJi9q3749UlJScO3aNdZR3oqKiYi4u7tj6tSp+PLLL7Fr1y4EBwfj77//Rooyi1ZIM6TX6xEbG4vg4GDWUeDm5obY2FiULVsWEyZMEOVDh6W3TF4UHByM2bNnC/7kTRqAFyF7e3uMGTMGOp0OyzfuwPCd+yGVySCTSi16hbRer2eyvmTJkiUYOnSooLa8b9++PQIDA7FgwQJIJBKMHTuWSYutJKhl8jwrKyt8+umnmD9/Pr788kvWcV6LWiYiJpVKYV3VBwCg1kHQ+/aYwuFzKXhYtrZJW2iXLl1CZmYmAgICTHbPorK2tsbXX3+NHj16YNKkSThw4ADrSEViZ2dHLZMXeHt7w87ODkePHmUd5bWomIhYXl4e9q9bDLlc8d+WLcLdt8fYUpUqjFh3GXsyyplsZ1WNRoMFCxZgwoQJRr9XaXh6emLu3LlQKpWYNGkS7t+/zzrSGykUCmg0GtYxBOejjz5CfHy8YFtt1M0lUmq1GpMmTULExAnQ2ZYX/L49xpaYlgEe+S008Fr8e/kePFyMO6tr3rx5GDt2LORy4a8F4DgO/fv3R+fOnTFnzhxUrlwZI0eONJu1KZaA4ziEhIRgxowZiImJYR3nJfROEiGNRoPJkydj3LhxqF69euFUQkstJEB+i0wmk8JGLgHHcTizdzNCQkKwZMkS3L171+D3S0xMhL29veg263RwcEBkZCQaNWqEL774AqdOnWId6ZXEOhPN2CpUqIDAwEBs2rSJdZSXUMtEZLRaLSZPnowxY8bAw8ODdRzBeHlTzW4AgNTUVGzcuBF3796Fg4MDunTpAl9f31IN1Ofk5OCXX37BvHnzDBXf5Pz8/FC/fn0sW7YM27Ztw8SJE+HgUPyNKInpdevWDeHh4WjSpAmqVKnCOk4hrjhPAP7+/vzx48eNGIe8iU6nw5QpUzBixAjRPRELwePHj7Fr1y4kJSVBKpWiZcuWaN26dbFnOUVERGD06NGC+iCXxr179zB37lz4+/ujb9++zHdcBoDxU2PQLGiIRXfdvklOTg4+mxyFju+PQZMa5Y36O+I47gTP8/5v/TkqJuKg1+sRGhqK999/H97e3qzjiJ5Go8G///6LgwcPIi8vD15eXujatSucnZ3f+Lo9e/bg4cOHGDRokImSms6+ffuwfft2fP7556hZsyazHKlKFTrO2Q+5XAGOg0VPd3+df5Ou4IP4C5BIJJDL5Ub9HRW1mFA3lwjwPI/w8HAMGjSIComByOVytGnTBm3atAHP80hOTsbKlSvx8OFDODs7o1u3bqhTp07hU3qqUoWDF27h6O6/8eOsaMbpjaNdu3aFa1N4nse4ceNMsjaF53ncuXMHJ0+eRFJSEs7m2EOvr45cjQ42cqmods41ptu3b2Pz5s24c+cOHjl6QS53wVOtHrL/lgSw/h2JtpikiuDkMUPgeR4RERHo06cPfH19WccxSxzHwcvLC15eXgAApVKJnTt3YuXKlbCysoJX49aIOpKHPLUaCtvmuPYw22zfc1ZWVvjqq6+QkpKCSZMmISgoCO3atTPY9XmeR1paGk6ePInz588XruquXLky/Pz80L59e9xV6dBtQQLU6jwAUoud7g4A9+/fx6ZNm3Dz5k1UqlQJvXv3RuXKlZGqVOHvhQmQQgeOE8bvSJTdXAUHyBQc7WmuzWCe5xEdHY2uXbsKclGcJXj69Cm+WbMfvyZroJfIYCOXIjKoLgYEVGMdzeh4nsemTZtw7NgxTJw4ERUrVizW6/V6Pa5cuYKTJ0/i0qVL0Ov1AIAaNWrAz88PXl5erz0xMlWpwp+nUpC0bwsWfRshiHEcU1EqldiyZQtSU1NRoUIF9O7dG9WrV3/p51KVKoR/txKRn72PWhXLGi2PWXdz5R8gwyNXozfbZjDP85gxYwY6duxIhYQha2trDO/eCuuu/gWOg0UtDOU4Dn379kXHjh0xd+5cVKxYEaNGjcL1jNyXegW0Wi0uXryIkydPIiUlBTzPQyKRoFatWvDz80P//v0hlUqLfG8PFzt80rE+DtllY9GiRRg7dqyx/jMFISMjA1u2bMGVK1fg7OyM3r17v3W2poeLHbrXdYIm4zZgxGJSVKIsJvkHyHCCauIZWmxsLFq1aoVmzZqxjmLxPFzsEOyrQ4bMCX1bNTC7B5e3cXBwQEREBE6dOoVRE0JwyKEVgPyWR1dJEhy4p5DJZPDy8kKLFi0wdOhQgy2GbN68Oa5cuYI///wTHTt2NMg1WXmxaz4zMxNbt27FxYsX4eTkhJ49e2LkyJHFumb9+vWRlJSEunXrGil10YmymBSsKQj7bgWmj/3Q7D7cs2fPRuPGjdGyZUvWUch/yknVaFK7rNm914qjYcOG6Khxwt+bT0PHyWAtk6LZe0Mx0MhdfsOGDUNERAQ8PDyYnVVTWs92zeu0OrTXHUfVclbo0aMHhg0bVuLr1q5dGxs2bDBg0pITZTEB8gtKbelDs/twz58/H76+vnj33XdZRyHP0Gg0r+3ftyRNapSHTCaDlOchkUjR2ES9AmFhYZg4cSK++eYbQS6uVKlUuHfv3nN/PXz4sHAl/xWdM/J01aGDFFZSCVr1GmGQIiyTyQSzNb1oi4k5WrRoEWrXro0OHTqwjkJeoFarRbEHl7F5uNhhx7hWCJu3HDPGjjDZw5xcLkdERAQiIiIwe/Zsk+wpplarcf/+/ecKxP3796HRaAonBBQUCzs7O1SsWBEVK1ZEnTp10Lp1a5QvX74w5/9bJvnjboYswkKZnEDFRCB++uknVKtWDV26dGEdhbwCtUz+z9PVHjW5+6jhXMak93V2dsbw4cMxa9YsTJo0qUTX0Ov1SE9Pf6kVkZWV9dKXskKhQIUKFVCxYkW4ubmhYcOGcHV1LdH74OXtfgxXhB0dHZGRkQEnJ7Zjx1RMBGDZsmVwdXVFUFAQ6yjkNahl8rz69evjzJkzaNCggUnv6+vri6tXr+KH1ZvgVCcAAe5OqOFcBllZWS+1ItLT0196PcdxcHZ2LmxFNGvWDBUrVoSdnfFbWB4udkZpyRUMwrdp08bg1y4OKiaMrVy5Eg4ODujVqxfrKOQNqGXyvI4dO2Lx4sUmLyYA0KBlR3SaewD686fBAeguP4+qZRWFBaJu3bpo27YtHB0dLWKL/Xr16iE+Pp6KiSUqmCJ47+y/cLVRoF+/fqwjkbeglsnzypUrh8zMTCb3TkzLgEwmL9xupVnQEItYRPo6Li4uePjwIesYVExMrWAgTqPRArDH7gltWEciRUAtk5c5OjoiPT0d5cuXN+l989eZweJPF32WEAbhzb8NKDCJaRnQaDTQ8BxkMplFn9kuJtQyeVmnTp3w559/mvy+BYPZkUF1zXYrpeKSSqXMpwhTMTEhvV6P47vWg+Mk9FQlMgX7wJH/8/HxwdmzZ5ncm04XfV6tWrVw9epVphmom8tEcnJyEBYWhmHDhuHTSjUtYsdjc/KEt8a6xBv0Z/YMjuMgkUig0+mKte8WMTxfX1+cOXOG6aF5VExM4O7du5g+fTrCwsLg5uYGAPSFJCKpShW2a7yxa/sFOqzpBU2aNEFiYiKaNm3KOopFq1OnDjZv3sw0A3VzGVlSUhJmzZqFWbNmFRYSIi7H0jLA80CuRgf+v4OISL62bdti3759rGNYPLlcDo1GwzSDqFsmBYNOMpkw/zN27tyJ06dPIy5o0+rRAAAgAElEQVQuziLmu5srze2LkEqlUEhpnOtFZcqUQXZ2NusYRACE+S1cRLa2tsjNzYW9vT3rKC/56aefYG1tjZCQENZRSCmd/udP/DE5EsfTHtGYySu4ubnh7t271PJmzNHREY8ePYKjoyOT+4v6cdnGxga5ubmsYzxHq9Vi6tSpqF27dqm2libCcOzYMQQEBKCmiz3NHnqNLl264I8//mAdw+L5+voiKSmJ2f1FXUxsbW2Rk5PDOkahJ0+eYOLEiRgyZAhtIW8mNmzYgL59+7KOIWienp5ISUlhHcPiFezRxYqou7mE1DK5ceMGYmNjERkZCWdnZ9ZxiAFcunQJnp6egh2TExK5XA61Wk27BDDk4uKCBw8eMLu/qD8lrFsmBXtsWT25hUO7t2L27NmwsrJilocY1qpVqxAWFsY6higEBgbi33//pRa5BRN1MWHZMinYY0ur1UKv57H763AqJGbk9u3bcHJygo2NDesootCyZUt8++23VEwYk0qlzBaRinrMhGUx+evibajVaqj1HORyOY6nPWKSgxjHzz//jJEjR7KOIRpWVlbIy8tjHcPieXp6MttWRdTFhEU3l06nw88//4wTf6yDXC6nPbbM0KNHj8DzPMqVK8c6iqjUqFED165dYx3DorEchKdurmJISEjA+vXrMWzYMIwYMaJwzITWHpiXZcuWYdSoUaxjiE6XLl2wbds2fPbZZ6yjWKw6depgy5YtTO4t6mJiqpbJzZs3sWDBAjRs2BDz588v3D3WWMdwEnYu3EpHYoYcveUOrKOITpUqVXDnzh3WMSyaQqFgtq2KqIvJg6fA0YdStFGqjPKlnpubi0WLFkGr1SIiIgJlypQx+D2IcKQqVejx/SFIJLXQfWECbehYAtbW1sjJyYGtrS3rKBaL1VEJoh0zSVWqMHT1eezNcETX+X/j6v0nBrs2z/PYuHEjwsPD0adPH0yePJkKiQVYt/8EeB7I0/G0oWMJvfvuuzh48CDrGBatbNmyePz4scnvK9pikv9B56DjpNDxekxdsBLh4eGYMWMG9u7di6ysrBJdNykpCePHj4eTkxPi4uJQo0YNwwYngnTlyhXcOn0QCgVNqiiNpk2b4vDhw6xjWDRfX18mh5aJtpvrxXOgp48dDg8XO2RnZ+PYsWNYtGgRVCoVOI6Dt7c3WrRogapVq772eunp6Zg3bx6qVq2K2bNn06pnC3L//n0sWLAA82bPxs3HeTSpohRkMhl0Oh2dTMmQr68vNmzYgJYtW5r0vqL9xiw4B/rFD36ZMmXw7rvvFi6e0uv1OH/+PHbs2IFbt24ByN/ltEWLFrBz88CxtAxcO7oH6vRbmDBhApyc6GnUkqhUKkRFRSE2NhZyuRweLnIqIqVUt25dJCcnw8vLi3UUi1ShQgUm26qItpgARZtNJZFIUK9ePdSrV6/wn925cwfb9h/G7HU3oNfzUCgqY+e4QXByoi8RS6LRaBASEoLIyEjY2dGfvaF06tQJq1evpmLCEM/zJr+naMdMSqNSpUpwqhMAuVwBvURGg60WiOd5TJ06FePGjYOrqyvrOGbFxcUFDx8+ZB3DokkkEuh0OtPe06R3E5D/j7lIoNNpabDVwsyaNQu9evWCp6cn6yhmyd7eHpmZmaxjWCxPT0+kpqaa9J4WW0wKxlwig7wx1OU2OJWSdSRiIj///DN8fHzQuHFj1lHMVocOHbB3717WMSyWr68vzpw5Y9J7WmwxAfILyoCAavjyo6H4+eefWcchJrB9+3ZIJBJ07dqVdRSz1rBhQ5w6dYp1DIvl5eWFixcvmvSeFl1MCtjZ2cHBwYG2gjBzR44cQXJyMj788EPWUcyeRJL/1aLX6xknsUwKhQJqtdqk96Ri8p9Ro0Zh6dKlrGMQI7l8+TJ+++03fPXVV6yjWIwqXn6I23IIqUoV6ygW6QlvjXWJN0z2+6di8h9HR0dIpVKahWJCqUqVSd7s9+/fx6JFixAdHU0L6UwkVanCvGQbLDnxCN0XJlBBMbFUpQo7dPUQuf28yX7/VEyeMXr0aCxZsoR1DItQcFJl5PYLRn2zZ2VlITo6GjNmzKBdDUwoMS0DWq0WGl5CU+8ZSEzLAM/zyNXoTfb7p2LyDFdXV+Tl5dGURhP4/5tdZ7Q3u0ajQWhoKCIjI2mjThOr51YGAE/7nDGiuZsMqVRq0t8/Paq9YNSoUVi2bBkmTpzIOopZy1/nw0HO8UZZ58PzPMLCwvDFF1/AxcXFoNcmb3fwt3VY0qc1HvD2tM+Ziel0OiTu24E/wqbjeNojk/3+qZi8oEqVKkhPT6czGYzs2b3Vzh7YiofXXOHhYrh1H7GxsejXrx9q1qxpsGuSolGr1bhx4wbGjPFmHcUirVixAsOHD0dNF3vUdLE32X2pm+sVhg8fjuXLl7OOYfYK1vlM+/pzbNq0CWlpaQa57rJly+Dr6wt/f3+DXI8Uzy+//IL333+fdQyL9OTJE6SkpKBBgwYmvzcVk1fw9PTEjRs3TD5P21JxHIdp06YhLi6u1If6/Pbbb5DL5ejSpYuB0pHi0Gq1SE5Oho+PD+soFmnBggX4/PPPmdybislrDB06FL/88gvrGBZDoVAgOjoa4eHhJT7D+vDhw7hy5Qo++OADA6cjRbVu3ToMHDiQdQyLdO3aNVhbW8PNzY3J/amYvIaPjw+Sk5Oh1WpLfA1TraMwF05OThg/fjymTp1a7C20L126hN9//50mTjCk1+tx6tQpNGrUiHUUi/T9999jzJgxzO5PA/Bv0L9/f3z/y0ZU8GlepBkRGo0Gd+/exe3bt3E65Q7mXFCAByCVSLD5o8bwrkazit6mZs2aCAoKwvz58zF+/PgivebevXv44YcfEBcXR4sSGdqyZQt69erFOoZFSkhIQKNGjWBjY8MsAxWTNyjv7oX5m+5Ace08AGBupwpA1gPcuXMHd+/ehUajee4JWi6Xw83NDZUrV0aOXSVIpY/xVKuHhAdm/rwJ1bS3YGVlhSZNmqB58+Z0INNrNG/eHLdv38aGDRvQr1+/N/5sVlYWpk2bhlmzZtGiRIZ4nse///6LOXPmsI5icfR6PTZs2IB58+YxzUGfvjdITMuAVCpFrkYPGfTYl5SGXvUrwsvLC25ublAoFK99bW2lCstOJRQuGor87H14uNjh6dOnOHbsGBYsWICcnBzI5XI0adIk/xhhKi6F+vXrh7lz5+Lw4cNo1qzZK39GrVYjJCQEUVFRNI2bsT/++IN2YmYkPj4egwYNYt4qp2LyBvkL6yRQSPSQyeT4tO+7RV7887oz6q2trdGqVSu0atUKAJCXl4djx45h4cKFUKlUUCgUCAgIQGBgIJRPuZdeb0nGjx+PkJAQVKhQAR4eHs/9O57nER4ejgkTJsDZ2ZlRQgLk/1ns3bsXs2fPZh3F4py/ocTWsw8Q26kn6yjgijPQ6e/vzx8/ftyIcYQn4cxlrNt/HBPef88kX+h5eXlITEzEjr8Tsf5JTchkMkilEvw+NtAiC4pGo8GECRMwbdo0ODo6Fv7zmJgYdOzYkQZ7BWD//v3Izs5GUFAQ6ygWJVWpQsc5ByCTSSGRGO87guO4EzzPv3XRFs3megu/WlVQRX3TZF/kVlZWCAwMRIMOfaBQyJGn4y16ozy5XI7p06cjPDwcl+48wrrEG/h20c/w8/OjQiIQO3bsQPfu3VnHsDhr9x0HxwFPtcL4jqBurrewtbVFTk6Oye9bsHeVjNOD5zmL3iivXLly6D9yLLp+9w+kUgnAu2JX/xasYxHkr+1p2rQp8/56S/PgwQOkJe6F3C4QMh6C2EyTiolAFYy5/HXxNs7t3woPF8se3LyrtYVMJkWeDrCRS5GYlmGR3X5Cs2nTJsycOZN1DIui1WoRHR2N2TExghpXpWIiYB4udvBwqYOpe7ORnZ1t0duoB7g75W+pLRHGUxgBTp06BV9fX0ilUtZRLEpsbCw+++wz2Nvbw94ezItIARozEYH3338fq1evZh2DqYKWWmRQXYudjFAcpth9Yc2aNRg0aJDRrk9etm3bNtSuXRteXl6so7yEWiYiULt2bSxevBg8z1t033R+S42KyNsUnGKp0WgKZ/nUqljWoPe4cOECatWqBblcbtDrkte7cuUKTp8+jYiICNZRXolaJkUghC/wDh06YM+ePaxjEBHIP8UShUfmhi9YidDQUOzatavEm2i+aNWqVbShpgllZ2dj3rx5CAkJYR3ltaiYFIFCoUBeXh7TDB07dqRiQookfyZg/kQFmUyKGeNHIDo6GtbW1pg2bRpCQkKwY8eOEr+nU1JSUKVKFVhZWRk4OXkVnucRFRWFsLAwQbcEqZurCJydnfHw4UNUrlyZWQaO4+Dp6YnLly+jdu3azHIQ4Xvd7gtt2rRBmzZtoNfrcejQIcyYMQMajQZNmzZFx44dYW1tDSC/m+xNM4SWL1+OKVOmmPS/yZItW7YM3bt3Z7a1fFFRMSkCFxcXKJVKpsUEyB+InzlzJqKjo5nmIML3pvEliUSCwMBABAYGQq/X49ixY5g5cyby8vJQzScA85OtAXDgODw32SFVqcLukyngHCpY9MxCUzp69Chyc3MLt18SMiomRVDQMmGtTJkykMlkyMzMRNmyhh1QJZZJIpGgadOmaNq0KXieR+zGBKg1j6CDFFLo8O2yjejXqDJsK7hj9KYU5KnVUMg9MVyposkQRqZUKrFu3TrR7HlGYyZFUNAyEYIPPvgAq1atYh2DmCGO49CvTUNYKRSQQgcrhQKje7WFtbU14vceQ55aDR2kADjmW3eYO51Oh+joaERGRgpiAlBRUDEpAqG0TADA3d0dN2/ehE6nYx2FmKGC8ZYASVr+/9aphpYtW+LLoT1gpVAUHqlAi0aNKzY2Fp988gkcHBxYRyky6uYqAkdHR2RkCOdJrFu3btixYwfee+891lGIGfJwsYO3dSYqO8if+2evGtQnhvf777/Dw8MD3t7erKMUC7VMikAqlUKv17OOUahVq1b466+/WMcgZszPzw8nT5587p95uNhhQEA1KiRGlJKSgsTERAwYMIB1lGKjYiJCHMfBx8cH586dYx2FmKmmTZviyJEjrGNYlJycHMyZMwehoaGso5QIFRORGjRoENauXcs6BjFT5cuXR1p6jtH39yL5eJ5HdHQ0QkJC3ngcuJBRMSkioc2osLa2hq2tLdLT01lHIWYoVanCDl09RG6/gO4LE6igGNny5cvRqVMn5mvZSoOKiYgNGzYMK1euZB2DmJmHDx9i0uwlkEgkyNXoBHGKnzlLTExEVlYW3n33XdZRSoWKSRFxHCeoQXgAqFy5Mu7fvw+tVss6CjEDPM/j119/xdy5cxE6egBkMhlNBTayhw8fIj4+HuPGjWMdpdRoanARlStXDpmZmXB0dGQd5Tm9evXCli1b0K9fP9ZRiIilpqZi/vz56NOnD4YMGQIA+H2sA00FNiKdToeoqChMnz5dcN3oJUHFpIicnZ2hVCoFV0yaNm2KjRs3lrqYvG1zP2KetFotvv/+e+Tm5mLmzJmFmz0CdH6MscXFxeGjjz4ym62RqJgUkYuLCx4+fCjIHXv9/Pxw4sQJNGrUqESvLzhMqeDwLTrJUBxK+wBw4sQJrFixAp988onoFsiJ3c6dO1G1alXUq1ePdRSDoTGTIipomQhR3759sXHjxhK/fv/ZG8jLUyNXo6fBVpEoeAAI23IGXb/7p1izrbKzsxEdHY2TJ09i/vz5VEhM7Nq1azh8+DAGDx7MOopBUTEpooKWiRApFAo4Ojri/v37xXodz/NYu3YtkvZthkIhp8FWEXn2NEWtVoPpP63B06dP3/q6Xbt2YerUqRg5ciRGjx4NiYS+AkwpNzcXcXFxCAsLYx3F4OidVERZnC3+vq0V7Hz7Dz/8ECtWrCjyz9+5cwcTJ06Eq6srvvsmDDs+b4nIoLrUxSUSz56mqFAoMKxrIMLCwrB582bwPP/Szz948ADBwcF4+vQpZs+eLer1DGIWHR2NyZMnm+UplTRmUgSpShV6/3QUWq0bui9MEOQXrqurKzIzM5GXl/fGNyrP81i5ciWuX7+O6dOnFx5yRIOt4vKqjRdb+8Vh3759GD9+PEaNGoUyFWvgWFoG7pz+G49vXkZoaKjZDPaK0YoVK9C+fXtUrVqVdRSjoGLyFikpKQhZuh1a1IQWUsj/G1MQ4hdv//79sX79egwdOvSV//769euYM2cOBgwYgA8//NC04YjBveoBoF27dmjdujVif1iBn29fAw8eMpkj/vgiGGXLCu89aylOnDiBjIwMs/7cUTfXa1y6dAmTJ0/Gzp07ETHmfVGMKTRo0ACnT59+qZtDr9dj8eLF+PXXXzFz5kw0b96cUUJiCjKZDDWbdoRUJoOOk0EikdKkCoYyMjKwatUqjB8/nnUUo6KWyQvOnz+PVatWwd3dHREREbCxsQEA0Zzl0Lx5cxw+fLiwYFy5cgULFizAsGHDSjx1mIhPgLsTpFIJpFo1AKlgH4DMnV6vR2RkJKKjo81+sgMVk/+cOXMGv/76K2rVqoXo6OiXxh3EMqbQo0cPjAudjuvSyrh86A/YarMQFxcn2p1ISckUjKlsTkgClCmieO+ao9mzZ2PkyJEoV64c6yhGZ/HF5MSJE1i7di28vb3xzTffQC6Xv/1FAnbj0VPskTbCrs2noVBUw85xraiQWCgPFzt81as5vvpqM/T6IWb/ZCw0u3btgpubG+rXr886iklYXDEpWDUsz7yJf//YjIYNGyImJgYymXn8KhLTMiCTyaHhdeA4iWAnCxDT6dmzJ7Zu3YrevXuzjmIx0tLS8M8//+Cbb75hHcVkzOMbtIhSlSp0W/AP1Go1pFIpdgZHwLOCA+tYBvXs+gMhTxYgphMYGIiJEyeiV69eZrGhoNA9ffoUs2bNwpw5c1hHMSmLavcmpmVArdFAx8kglcpw4sZj1pEMrqCvnBYgkme1a9cOBw4cYB3D7KUqVRgW9SMGfzzeLBcmvolFFZMGle3Bwfyf2j1c7DAgoBoVElKoa9eu2LlzJ+sYZi1VqULneQdxSlILozelCHa3DGOxqG6upH/3Iq59ZeQ5VBH8FF9CDInjOPj5+eH48ePw9/dnHccsJaZlQKfXQwcppAJe3GwsFtUySUxMRI+2zeipnVikgh0SiHE0qu5oET0fr2MxLZNr166hRo0aNABJLJZMJkPNmjVx6dIl1KlTh3UcsyNRKfFJjUxUbdjaIns+LKZlEh8fj0GDBrGOQQhTH3zwAVatWsU6hlk6ffo02jeuZ7E9HxZRTDQaDbKzsy1iFSohb2JjY4Py5cvj1q1brKOYnQsXLqBu3bqsYzBjEcVkx44d6N69O+sYhAjCyJEjsWzZMtYxzI5arbbo3SYsopgcOnQIzZo1Yx2DEEEoW7YsZDIZ0tPTWUchZsTsi8mNGzdQtWpVGngn5BnUOjGs9PR0ODlZ1uytF5l9MYmPj8eQIUNYxyBEUCpWrIisrCxkZ2ezjmIWzpw5gwYNGrCOwZRZFxOdTofHjx9b/BMDIa8yfPhwLF++nHUMs3D69GmL2R34dcy6mOzatQtdunRhHYMQQfLw8MCtW7egVqtZRxG9x48fw9HRkXUMpsy6mPz9999o1aoV6xiECNbgwYOxZs0a1jGIGRBUMUlVqrAu8UapN0hLVarw056zsHapRgPvhLyBr68vzp07B71ezzqKaD19+tTidgh+FcFsp5KqVKH7wgTwPA+Aw5aPG6OGcxkAKCwIRfnf1IcqBC38F2q1GnK5B4YpVRa5GpWQourRowe2bduGXr16sY4iShcuXIC3tzfrGMwJppgkpmVAo9FAw0sggw4xS9fjHcWj/4oLivy/l7TlkaetBh2kkMPydu4kpLgCAwPx5ZdfomfPntSSL4HTp0+jbdu2rGMwJ5hiEuDuBJ7n/9txU4qIMe+XqAgUtHA0Gi14nre4nTsJKYm2bdviwIED9KVYAmlpaahevTrrGMwJZszEw8UO3WXnSn1CYMFJg2Fd6yBIfp5aJYQUAR2eVTrUohNQMdHpdCgnVRtkx00PFzsMC6wFWW5GYfcXIeT1nj08ixQdTVz4P8EUk9TUVHh4eBj0mo0bN0ZiYqJBr0mIuerfvz82bNjAOoaopKWlGfx7S6wEU0zOnj0LX19fg16zS5cu1HQnpIhkMhk8PDxw6dIl1lFE4/Tp0xa/jUoBwRSTCxcuwMvLy6DXtLa2hlqtpqYoIUU0bNgwLFy53iDrvSyBpZ9h8izBFBO1Wm2UhT+BgYFISEgw+HUJMUd3srT4g2+AiN/Oo/vCBCoob2HpZ5g8SzDFxFjat2+PPXv2GOx6hlqlT4gQJaZlAACeavXg+f//PSFvI4h1JiqVCmXKlDHKtRUKBXieh1arhUxWuv/cC7fS0fvHo+AkHDiOK9UUZkKEKH9dVsF6L9A6rTegM0yeJ4hicv78efj4+Bjt+gULsjp06FCkn9doNLh69SrOnTuH5ORkaDQa8DyPNGkl6PmqUGs42MiltLqemJ0Kthx62V6Gf+f+CHB3ovf3G9AZJs8TRDFJSkpC586djXb91q1bY3z4DGSUq/PcB0Sv1yMtLQ3nzp3D+fPnkZOTA47jIJPJUKtWLfj4+OC9994rHMspWF0v5UFPbcQsHThwAL3bt0CzgGqsowje6dOnMXz4cNYxBEMQxeTmzZuoUqWK0a5/PSMXf/D1sXtrEvR6Ht1lZ+HAPQXHcahRowa8vb3Rrl27t3a1FayuT0zLoKc2E0lVquj3bUJHjx5FZGQk6xiiQGeYPE8QxYTneaNuR3Dwwi3o9Ty04GAtl6JZ0PsYUMInLw8XO/pSM5H/7ySd3xKkMSrj4nkeer0eUqmUdRQiQsxncxl7u5PHjx/j4IZlsLJSwEYuhYTjqHtKJBLT8rfDydXoaGaRCSQnJ+Odd95hHUMU6AyTlzFvmdy+fRtVq1Y1yrUzMzMRGhqK+dOn45FWTt0lIlNQ9GXQg+Ok9BBgZLt378bgwYNZxxAFOsPkZcyLSVJSksG3UUlVqvBP8h3sX78Uc6dNg6OjIxwBKiIi4+FihxUD38GKHQn4+sNe9OdnZEqlEq6urqxjiAKdYfIy5sXkn9OX8E6r7nA10ImIqUoVui34J39lquO7eKxTgJ5nxau8QofmFelBwNiMudbLHNEZJi9jOmaSqlRhQ1ZNfPtnisG2bijoZ9dxMgAc9bOLXHZ2Nn3JmcC+ffvQrl071jFEhc4weR7TYpKYlgG5XGHQAdYAdydIJBJIeR2tBTED5lBMxLAFz/Hjx+Hv7886hijQxrGvxrSbK8DdCRwHg27dULAWZO6v2/Fes+rUPSJyYi8mqUoVusz/CzwPyGRSQU5vpinBxUNnmLwa05ZJwRd/aY/qfdV1Y0YF4fDubQa5Hnk9Yz91i72YHLryAFqtDmo9kJenxszlm5CZmck61nNoZlLx0Bkmr8Z8AN5YiwDt7OygVqtpi2gjMsWiQrEXk5QjuyGXV4eCk4DjpBjSoQkWLlyI3Nxc9OnTBw0bNmQdEbt378YHH3zAOoZoXLhwAd27d2cdQ3CYFxNj6t69O37//Xf07t2bdRSzdCwtAxqNFhqegxQ6zF+zA+ODGsPd3d1gg5NiLiaPHj2CPvMedo4b+twap1YNQ5GXl4dNmzZhzZo18PHxQf/+/WFtbc0kZ3p6OpydnZncW4zoAfXVzLqYNGnSBJMmTaJiYgQZGRk4sG4JJNZNYSORguOkeK9pDezbtw9paWkAADc3N7Rs2RI+Pj6QSErWoyrmYrJo0SJ89tlncH1F69vKygqDBw/G4MGDcfbsWcyYMQMymQyDBw+Gp6enyTI+efIE9vb2JrsfMV9mXUw4jkPlypVx+/ZtVK5cmXUcs7Fnzx7s2bMH34ZOeXlngcb1Cn/u9u3bSEhIwIYNG8DzPMqWLYvmzZvD39+/yFtRiLWY3LhxA9bW1kVaBFivXj3Uq1cPWVlZiI+Px08//YTAwEB069at1GfwvM2+ffvQvn17o97DnJy8cgt3bNyRaqB1ceaEK87eWP7+/vzx48eNGMfwHjx4gFWrVuGrr75iHUX0cnNz8e2336Ju3boYMGBAsV//+PFjHDp0CMePHy88prlx48Zo1qwZHBwcXvmaiIgIREVFlTa6yU2ZMgVhYWElKoQ8z+PQoUP4/fff4ejoiKFDh8LNzc0IKYGwsDBER0eXuOVoSVKVKnSaezB/6YFUIsiZecbAcdwJnuffOm/crFsmAODq6gqlUgm9Xk8fmFI4ceIEVq5cieDg4BIfF1CuXDl07doVXbt2BZC/WV5iYiJ++OEHZGVlQSKRwNfXF4GBgahYsSIAIJO3xrrEG6LaU+3MmTPw8PAocYuK4zi0aNECLVq0gFKpxC+//IL79++jc+fOaNOmjcHGo3ieB8/z9LkoohU7EwDwyNPxsJGADsd7gdm3TABg586dsLW1RZs2bVhHER2tVovvvvsO1tbW+OSTT4z6xaPT6ZCUlIR//vkH9+/fxxPeGjv1vlAorES1Bf3EiRMRGxtr0C4qnU6H3bt346+//kK1atUwZMgQlCtXrlTXTEpKwoULFzBw4EADpTRfhw8fxrb9h/Gbuq7FHYlALZNndOzYEeHh4VRMiiklJQXz5s3Dp59+irp16xr9flKpFA0bNiycLrs28Qb2bj+PXI1ONMck79+/H61atTL4WIdUKi1s1aWlpWHRokXIzc1F79694efnV6Jr/vnnnxgxYoRBc5qjs2fPYufOnYiJjsZHD7Np9/HXsIhiIpPJYGdnh8ePH5f6ac4S8DyPFStW4O7du5g9ezazaZCN3Z3AcZxBd0gwJr1ej99++w1z58416n3c3d0RGhoKtVqNzZs3Y+3atfD29kb//v1hY2NT5Os8evQITk7C/p2ylpKSglWrVmHmzJngOI4Ox3sDi+jmAvLfFHv37r6P704AACAASURBVMXHH3/MOoqgPXjwADExMejTpw8CAwNZxxHVsb1r165FtWrV0Lx5c5Pf+9y5c9iwYQMkEgkGDx6MWrVqvfHnMzMz8eOPP2LSpEkmSiguqUoV9py+hmM74vHjrGjI5XLWkZihbq4X1KxZEz/99BPrGIK2fft2HDp0CFFRUa+dXWVqYnkSzMvLQ2JiIrPxBx8fH/j4+CArKwtr167FkiVL0KxZMwQFBb2yy23Pnj3o0KEDg6TC99wxFg6tcfNxHjxcLLeYFJVFTeOoV68ekpKSWMcQHJVKhdDQUOj1esTExAimkIjJ0qVLMXr0aNYxYG9vj9GjR2PmzJmoUKECwsPDERsbizt37jz3c7S/1OslpmVAo9H8d4wFHRddVBbTMgGAPn36YObMmQY/2VHMDh8+jHXr1mHy5MmF03FJ8WRmZuLu3buCOj+d4zg0b94czZs3h1KpxOrVq3Hv3j106tQJ1XwCcEXvgrT0HFG0+kytYGxOLGN1QmFRxcTW1haPtHKsPpyK5p6uFv1B0mg0mD17NlxcXDB37lw66KcUCrZNESoXFxdMmDABer0eq7bswug5+yGVeqL7wgSLmd5aHOWkagx0TEO9d3uKYqxOKCyqmKQqVdiFBtj1+wXIZJct9oN08eJFLFq0CF988cVbB2rJm92+fRsSicRoK9QNSSKRwKaaDxRnLiBXo4OUp4V3r/LXX3+hZ9vm8PevxjqKqFhMMTl+/Di+3fA3eGktaHiJRX6Q9Ho9Fi9eDJVKhXnz5hl93ydL8P3332Py5MmsYxSZMQ6kMzenTp3Ce++9xzqG6Jj1twnP89i/fz927twJf39/xEwYiR4/HIbsvxWs5vxBKphSW7GsNe5lPkU1Gw3WLJ6PoUOHIiAggHU8s3DhwgVUqVJFVLvuFhxIJ5bp1izodDo6dbIEzLKY6PV6bNu2DQkJCWjbti3i4uIKxwQs4YNUcGiVVqeHWsdDxvEAr8dvX09F3ap0boWhLFu2DDExMaxjFJtYpluzkHjpBh7Y1aRdgUvArIqJRqNBfHw8zp07hx49emD27Nkv/YwlfJAS0zKg+6+QADy0PAcbuQJn7+WgblXW6czD33//jaZNm9IhSWYkVanC4JVnwHEV8C9NTig2sygm2dnZWLFiBW7evIlBgwZh2LBhrCMxVdAvLgMPLThYySRm361nSjzPY9OmTZg3bx7rKMSAvt/4JwA51HpAotdb3JhqaYm6mDx69AhLly5FZmYmPvzwQ5OeUCdkHi52+KFHdWw7fB69OrXBvcynZt2tZ2qbNm1C7969aTq1Gfn1119RScZDLneGjOehVqtR25HGTYpDNMXk2T2arDVPsGzZMgDAqFGjRDEt09RqOJdBA/sctK799pP+SNFpNBocOnQIc+bMYR2FGMjy5cthY2ODiaMHoud/3zNezgosnj0d3377Lezs6CGsKERRTAoGlHU6PXQ6LQaUvYavxo6Fo6Mj62iCJZPJoNFoWMcwK6lKFeJWbkGPvkNZRyEGsnjxYpQvXx59+vQB8PyY6tSpUzFlyhTExcUV+ZhpSyaKvbkKBpTzdDzkcjl82/WiQvIWcrmciokBFWz+tzu9LCbsvo9UpYp1JFJKixYtQsWKFQsLyYtcXV3x1VdfISQkBDqdzsTpxEcUxSTA3Qm8Xg8rKQeO42gguQjkcjm0Wi3rGGYjMS0DWq0OOkjB87T5n9jNnTsXNWvWfOvixOrVq2PUqFGYOnUqinNchyUSRTHxcLFDD5tkhHd9h6brFRF1cxlWgLsTeF4PGznNjBMznucRGxsLX19fdO7cuUiv8fLyQs+ePUW5psiURDFmAgA2mid4v7kH6xiiQd1chuXhYoeukiS0CPqAZsaJFM/zmDFjBlq1aoWWLVsW67UBAQF48uQJFixYgM8//9xICcVNFC0TUnzUzWVYjx49QjVHawwIqEaFRIR4nkdUVBTatWtX7EJSoF27dqhatSpWrlxp4HTmgYqJmZJKpVRMDOjw4cNMjuMlpafX6xEeHo6goCA0bdq0VNfq2bMnOI7Dli1bDJTOfIiimOj1elogVkz0+zKsEydOoFGjRqxjkGLS6XQICQlBv379DPbn98EHH+D27dvYt2+fQa5nLkRRTO7evYtKlSqxjiEqqUoVLuucaQqrgeTl5dFaA5HRarWYPHkyPvjgA9SvX9+g1x47diyOHj2KxMREg15XzERRTK5fvw53d3fWMUSjYJHnMW11dF+YQAWllNRqNeRyOesYpBg0Gg2Cg4MxevRo1K1b1yj3mDJlCrZu3YqLFy8a5fpiI4pikpaWhurVq7OOIRqJaRnQ63loIaE1EQZw6tQp+Pn5sY5BiigvLw9ff/01xo4di9q1axvtPhzHITo6GkuXLsX169eNdh+xEEUxuX79OhWTYghwd4Jer4dCav6HgJnCv//+S4PvIpGbm4uvv/4aEydOhIeH8ZcSSKVSzJgxA3FxcXjw4IHR7ydkoigmubm5sLGxYR1DNDxc7NDPIQVTOnrSIk8DyMjIQPny5VnHIG+RnZ2N4OBgTJ48GdWqme78disrK8TExCAqKgqZmZkmu6/QiKKY0Myk4pNmP8TwVnWokJQSbaEhDllZWQgODkZYWBiTyTp2dnaYNm0aQkNDkZuba/L7C4Eoigl9oIsnVanCFb0LDbwbQEpKCp2TI3CPHz/G5MmTERUVhQoVKjDL4eTkhJCQEEyZMsUid58QfDGhNSbFc/VBFjrP+4tmchlIQkICWrRowToGeY2MjAyEhIRg+vTpcHZ2Zh0HlSpVwtixYzEudDrWHLtuUZ8/we/Ndf/+fVSsWJF1DMF79OgRVq1ahYQ7ekBWG/9r797jqqrz/Y+/1t6bu5dkxNLyLtZgiiLqQR17mJ4pL5DOsWMz6Uxl/UrL0jTvclEKBSVvWb981PxMZ/IyZ1QUnMmkOt7lqlk6QsSEmoAXQBDY7L3X7w+CUacShb3XXovP8/Hg8fCy9loflL3fa32vdsWM3S5bjzZWbm5us98G2l0VFxcTHR3NsmXLaNWqldbl1DO1vo/PvAaxb8cJPDw8SJ7+q2bxHnT7MJE5Jj/vxIkTbNu2DV9fXyZPnky4jz9j1x3E/MPWow+19dS6RN2TJ2P38/333/Pmm2+yfPlyt9sJMS3/CopiwoYZtaaGtVv2kvjKBMP/HLl9mOTn59OnTx+ty3ArNTU17Nixg7S0NPr06cPixYvx9vau//s9rwwlLf8KgfeY2Lg2npUrVxr+B9kZLl++jL+/DKt2N+fOnWP58uXEx8fj6+urdTn/ZkAXfxQFfDzMKIqZwYGtmTFjBtOmTePBBx/UujynUe6kczs0NFRNT093Yjn/bvny5bzyyiv4+fm59Lru6OLFi2zcuJGSkhLGjx/PwIEDb/uaI0eOkJ2dzdSpU11QobF8sG03hWpLnno0tFk0U+hBfn4+iYmJxMfH33QD5W7yfthLvm67AqvVyvr166mqquK1117T1VQHRVEyVFUNvd1xbv9kcv369WYdJKqqcuTIEZKSkggICOC5554jICCgwa8PCwsjMzOTo0ePNnrF1OYkr7icuCwVD49KNn99UObruIHc3FzeeecdVqxYgaenezff3riXPICnpyczZswgPz+fBQsW8Pjjj/PYY49pWGHTc/swaa4qKyv5+OOPOXPmDIMHDyY2NhaL5e7+u6ZNm8asWbMIDAyUyXe3uH79Orm5uZw9e5acnJz6OQI5jgAcjk5U1jjw8TDLQAaNnTlzhg0bNhAfH6/rddK6dOlCYmIiu3bt4o033mDmzJmGWcRWwsTN5OXlsXnzZux2OxMnTuS5555r9DkVRSEqKorIyEjefvttTCa3HxHepKxWK99++219YJSUlNT/na+vLz169KBnz56MHj26vg0+r7icUau/QFVlSRqtnTp1ik2bNhEfH4/ZbNa6nEZTFIVx48YxcuRIEhMTadeuHS+88ILuvze37jP5pvgai1f/P2Jfe1YXd4W3tpM2lMPhYN++fXz66ad07dqVSZMmOWWoY1ZWFp9//jkzZ85s8nNrzeFwUFBQwNmzZzl79iyFhYX1f+fh4UG3bt0IDAwkMDCQNm3aNOicuYVlLFz9R+JmTtHFz58RZWVlsX37dmJjYw17E5Sdnc0HH3zAM88845Z75jS0z8RtwySvuJwxaw9gs9nw8PBw+zbrumXf6+5kG1JvaWkpmzZt4rvvvuPXv/41I0aMcPqoqw8//BC/+7pCQHdd7GV+Y0B3betHYWEhOTk5nD17loKCAhwOBwAmk4mOHTvSs2dPevbsSbt27Zrk3zIyMpJFixa5fRu9EaWlpbF7926io6MNGyR1HA4HH374IQUFBbz++uu0bt1a65Lq6b4Dvm7Z9BrVhOWHZdTd+YNva2oG1VYrdsx4KCoH/vE93QICf/TYU6dOsXXrVry8vJg0aZJL59E8Ev4kj7/9OQ41G4vJzI6XBhHUUfuZw7eqqKhgV+oRoo5U4lBVFGCs5RQ9299DYGAgI0eOpGPHjk7/kBk5ciT79+9n1KhRTr2OuNmhQ4fYv38/MTExzWJYu8lk4vnnn6ewsJC4uDhCQkJ48skndfW9u22Y1I7VVvA01e6Y5s5t1ikpKVzLO4uX50Ooqoqqqny5fwfz9lwhLCyMB0N/Rea5MspyM8nNOszDDz/MggULNBkemJ5/FYvFg8oaO2Yg7oPtdKo5R4sWLRg2bBgDBw7UpIOzqKiIQ4cOkZ2djd1ux9fXF2vHUCwWS30neFj4JCYOcN1qsABDhgwhMjJSwsQF6p5C1aJcvj15jMWLF+vqw7Qp3HvvvSxbtozU1FRmzpzJ9OnT6d69u9ZlNYjbhkm3gBb1k++++jyJkoKzEOB+GxRt2rSJ6upq3po/g+dv6jMZjaqq/HXfwdrmL8Bi9iJlbhTdA1pqVu/NE6og5uXJdAtowbVr1zhw4ABvvvkmNpuNtm3bMnz4cHr37t3kd/+qqvLNN99w8OBBcnNzAQgICGDo0KGEh4fXj1rLKy5nW+7B+lq1uKEwm81YLBasVqs0dTlRXTOxzWbH4XDwyevTm12Q3OjRRx9lyJAhrF27FoDp06e7/bbRbttnciOHw8GsWbNYtGiR2wxtVVWV1atX07lzZ8aPH/+Tx21N+47o3V9TWWPHx8NMdHiQy++ub9WQgQLFxcV89tlnnDx5ElVV6dSpEyNGjKB79+53/Ca32WycOHGCgwcPcunSJQC6d+/O0KFDb3u+ux3U0JQOHTrE1atXGTt2rCbXbw62pn1HVNIpqmyq27xP3EVubi5r165l3LhxDB8+3OXX130H/K1KS0uJjIwkMTFR8yF0DoeDJUuWMHz4cB555JGfPfZuOubd0T//+U9SU1P55ptvUFWVX/7yl4wYMYL27dv/2wd+RUUFx44d49ixY1y/fh2z2UxwcDBDhgyhXbt2Wn8rd8zhcLBo0SLeeustrUsxrLzicv5z5X48PT1RFEW37xNnUVWV7du3k5GRwaxZs1z6PjJcmEBtx3VKSgpz5szRrIbq6moWLFjAM888Q+/evRv0Gne4u25Kqqpy+vRpUlNTOft9CSmOPiiKCVV1MMb8Jff5mRg0aBCDBg0yzOoF0dHRzJs3z62X8NCzffv28U1xOW0C+xvmfeIMpaWlJCYm0rFjR5577jmXjHIzZJgAbN26FT8/P02aHMrKyli4cCGzZ8+WPel/UNuM99UPneQmosN7GbJ54siRIxQXFxMREaF1KYZjtVqZM2cOb7/9drPuJ7kT6enpbNy4keeff57g4GCnXquhYaK7wdsTJ04kPT29vuPWVS5evMj8+fOJjo6WILlB3ai72k5yxa1H3TXGoEGDOHr0qNZlGNL69euZOnWqBMkdCA0NZdWqVRw+fJglS5ZQXl5OXnE5W9O+02xDLrcdzfVzFi5cyMyZM122BHVOTg7r1q0jPj7eMM02TeXGUXdGbp4wmUx4enpSWVmpqxVf3d25c+coLy839NLszmI2m5k6dSoXLlxgdkw8qZ4DMZvNmvU56e7JBGqXx1i4cCExMTFO3x8+PT2dDz74gBUrVkiQ/IRuAS2YOKCTYYOkzqhRo/j73/+udRmGsmbNGmbMmKF1GbrWoUMHhv/384BCZY0DVf3XpG9X0mWYALRv357w8HA2bNjgtGt88skn7Nu3j7i4OF2vVCqaxsCBAzl27JjWZRjGZ599xoABA9xup0Q9GtDFH4vFrOmcLN2GCcDQoUOx2WwcPny4yc/98ccf8+233zJ//nxpyxVA7WqvPj4+9cvUi7tXU1PDzp07mTBhgtalGEJdc3N0eJBmw6p1HSYAU6dOZceOHTetEttY69atw2Kx8OKLLzbZOYUxjB49mr1792pdhu699957vPjii3Kj1oS0bm7WfZgoikJ0dDSxsbHYbLZGnatuMmJQUBBPPvlkE1UojKR///5oPTxe777//nuuXr1KUFCQ1qWIJqT7MAHw8/Nj+vTpxMXF3fU5rFYrc+fOJSIigkcffbQJqxNGUtfUVVFRoXUpurV69WpD7qnT3BkiTAB69uxJnz59+Mtf/nLHry0vL2fWrFlMmzaNvn37OqE6YSRjxowhJSVF6zJ06cCBAwQHB9OypXaLnQrnMEyYADzxxBPk5ORw+vTpBr+mqKiIuXPnEhkZSdeuXZ1YnTCKfv36kZmZqXUZumOz2di+fTtPPfWU1qUIJzBUmADMmTOHd999l7Kystsem5eXx9KlS1m+fDkBAQEuqE4YgaIo+Pn5UV6uzUxjvXr//fd54YUXpNPdoAwXJmazmcjISKKjo392QmNWVhbvvfceiYmJMs5d3LGxY8eSnJysdRm6UVhYSFFRUYMXRxX6Y7gwAWjbti2//e1v6zeWudX+/ftJTk5m2bJlMhlR3JXg4GCys7O1LkM3Vq1aJZ3uBmfIMAEYMGAALVu2JDU19aY/37ZtG2fOnGHRokUuWb5ZGJOiKLRoUbtDpfh5R44cISgoiNatW2tdinAiQ3+aPvvss3z66acc+jKXrWnf8eaaDTgcDl5++WWtSxMGEB4ezp49e7Quw63lFpaxbNsXhD02TutShJMZOkwAJr88m9//6SsW/DWbj4o6MHCEbL0qmkbv3r05efKk1mW4rbzicsasPcDXPr2IeOeQZkujC9cwfJik519BVcGOGZPJrMlqmsKYFEWhVatWDRo52Byl5V/BZDJTo5qwWms4Lu89QzN0mBQUFPDplvfx8vTUdDVNYVwREREkJSVpXYZbqt04DXw8zJjNJlK3vC8rBxiYLjfHaojDhw+zc+dO/m/CEi5csxl+8yahjV69erF582aty3BLt26c5mvvz9y5c5k5cybdu3fXujzRxAwZJhs3bqSsrIzly5ejKArdvJEQEU6jtgjgj1/8g0eC7pefs1t0C2hxw79JCxITE4mNjWXIkCE89thjmtYmmpahmrlsNhsxMTG0a9eO6dOny0xb4XR5xeXsrHqIZfu+Yey6g9LJfBuenp4sWbKEwsJCVq1a5fSdUoXrGCZMrl69ysyZM3nqqacYNWqU1uWIZiIt/wqKYqLarmq2Xaoe/f73v2fw4MHMnj1blqUxCEM0c50+fZr169ezZMkS2rRpo3U5ohm5sZNZBnjcmYEDB9K5c+f6fpQePXpoXZJoBOVOHjNDQ0NVd9sYKCUlhfT0dBYsWIDFYohsFDqTV1wuAzwaoaamhtjYWMLCwnj88ce1LkfcQlGUDFVVQ297nF7DRFVV1qxZg7+/P5MnT9a6HCFEI23atIlLly4RMel50vOvSji7iYaGiS5v5SsrK4mMjOQ3v/kNYWFhWpcjhGgCkydPJumzo/x6ZSpmiwWL2cyeV4ZKoOiE7jrgz58/z+zZs3nttdckSIQwmMoWHUBRsNqh2mpl/tsfkJycTFVVldalidvQ1ZPJ8ePH2bZtGytWrMDHx0frcoQQTWxAF38U6gY0mHlz2rMU5n7J8uXLqaqq4uGHH2b06NEy0MYN6SZM/vSnP1FcXExCQoLMHxHCoLoFtCDc4yv+I/zp+j6THvcOYciQIaiqytdff82GDRsoKSnhgQceIDw8nI4dO2pdtkAHYWK324mLiyM4OJinn35a63KEEE7W2lTNxAGd/u3PFUWhV69e9OrVC6hde2/37t2cO3eO1q1bM2bMGHr16iU3mxpx6zApLS0lMjKSF198kaCgIK3LEUK4QENHmHbs2JFp06YBUFJSQkpKCn/+85/x8vJixIgRhIWFYTabnVmquIHbhsnZs2dZu3YtMTEx+PvLRDAhxE+75557+N3vfgdAVVUVqampREVFoaoqYWFhjBgxQvpZncwtw+STTz7h0KFDJCYmyh7tQjQzjW2m8vb2ZvTo0YwePRq73c6xY8dISEigsrKSXr16MWbMGOnAdwK3ChNVVXn33Xfx9fUlJiZG63KEEDpnNpsZPHgwgwcPRlVVTp8+Xd+B36FDByIiIujUqbZ/RlYyaBy3CZPq6mqioqIYO3YsQ4cO1bocIYTBKIpCUFBQff/r+fPnSUpKoqCgAIdfW3ZWPYSiKCiKIpMl74JbhMnFixdZunQpc+fOrb9LEEI0T65alv7+++9n6tSpAPzxi39g/3sONaqCj0ft9t4SJndG0zDJKy5n+xdZ5B75G6vi4/Hz89OyHCFEM/VI0P0kpH6LRUVWf75LmoVJXnE5o9f8LzabDc8Wv6Lwuko3yRIhmj0t5oncusWwPJXcOc3CJC3/CjU2G3bMePywqZD8BwrRvNntdkwmbZYMvHmLYXGnNFvoMbRLGxRVNhUSQvxLdXU13t7eWpch7oJmTyY1l88ztXspD/R9RB4rhRBA7fYSEib6pFmYJCcn84c//IG2bdtqVYIQws1UVVXJTHWd0qyZ6/LlyxIkQoibVFVVyZOJTmkSJkVFRQQEBGhxaSGEG5Mw0S9NwiQ5OZmxY8dqcWkhhBuTPhP90iRMcnJyCAwM1OLSQgg3Jk8m+uXyMJE7DyH0K6+4nK1p35FXXO6U8+dfuc6xYrPTzi+cx+Wjufbv38/IkSNdfVkhRCPVrVpRY7OhAOEeX9HaVH3b16mqWr+Aoslkqv/1rV+lDi+2lnbFYrHw538clMUWdcalYZJXXM7mw3nEvjbMlZcVQjSB//nf7PpVK3w8zPxH+NM/ur3uj1FVtf7L4XDc9Pu6r79kXsCUcoZqO/iYZFUMvXFZM1decTlj1x0kTe1CxPrD8hgrhI5kZmZSkPk5Xp6ed7VqRd1TidlsxsPDA09PT7y8vPD29sbHxwdfX1+GPngfigJeZkVWxdAhlz2ZpOVfQVVV7JhRVVXuOoTQiczMTHbs2MHq2CV8e6nCaYshdgtowf/pdAWfzr0Z1T9QPh90xmVhMqCLP4qi4GVWsFqt9G4vSwQL4e7qgmTJkiUoiuL0xRBbUklE8H20lyDRHZc1c9Ut8bzkiYfZPOlh3omLpKSkxFWXF0LcoczMTHbu3FkfJK5QXV2Np6enS64lmpZLhwZ3C2jBxAGdCHu4O7GxsSxatIjz58+7sgQhRAPUPZHExMS4dH8Rq9WKl5eXy64nmo5ma3O1adOGhIQEVqxYwZkzZ7QqQwhxi4yMDJc/kdSRJxP90ixMAHx8fFixYgWbN2/m6NGjWpYihKA2SHbt2uXyJ5I6VqsVDw8Pl19XNJ6mYQJgNptZunQpBw4cIDk5WetyhGi20tPTNQ2SOlpeW9w9zcMEan943njjDS5evMimTZu0LkeIZic9PZ2kpCQJEnHX3CJM6kyZMoWWLVuyatUqVFXVuhwhmgV3CRKhb24VJgDjxo0jJCSE6OhoHA6H1uUIYWjp6ens3r3bbYKk1OHl1IUkhfO4XZgADBs2jAkTJvDGG29QXX37heSEEHeuLkiio6PdIkjyisvZXdOL6N1fM3bdQQkUnXHLMAHo3bs3r776KrNmzaKsrEzrcoQwlLS0NPbs2eM2QQK1Sy6hKFTW2FHVH34vdMNtwwSgc+fOxMTEMG/ePC5evKh1OUIYQlpaGsnJyURFRblNkEDtkkueHh54KA5qaqz0vb+l1iWJO+DWYQLwi1/8goSEBOLi4sjJydG6HCF07fjx4+zZs8ftggT+teRS7PhgNvxXd9a+tZivvvpK67JEAyl3MmoqNDRUTU9Pd2I5P62mpobFixczYcIE/Ds/5LSVS4UwquPHj5OSkuKWQfJjbDYba9aswdPTk2nTpmEyuf29ryEpipKhqmrobY/TS5hA7QY7895MZGflQ5jMtXsqyG5sQtye3oLkRllZWXz44YfMnj2bzp07a11Os9PQMNFV1CuKQshjT6KCdNIJ0UDHjx9n7969ugwSgH79+pGQkMBHH33ERx99JHPQ3JSuwgRqO+ksFvNd7fYmRHOSV1zOsm1fsCU5lcjISF0GSR1vb28WL15M586def311ykqKtK6JHELXTVz1ckrLpc+EyF+QnV1NZ8cyeb1T4pwOBx4eXkZqjm4rKyMuLg4wsLCiIiI0Locw2toM5fLdlpsSs7e7U0IvaiqquLLL78kIyODCxcuAODp6Un5vX0wmy3UqCZsNruhtslu1aoVcXFx7Nq1i/nz5zN//nxatWqldVnNni7DRIjmqLKykpMnT5KRkVE/78rLy4s+ffoQERFBhw4d6o/NKy4nad1BfDzAZqsh5/DfUENf0HVT162eeOIJwsLCiIqKYvz48QwbNkzrkpo1XTZzCWF0169f58SJE2RkZNT3D3h7exMcHExISAjt27e/7TlubA4+dzqTvXv3Eh0dbbidDFVVZdOmTeTn5zNnzhy8vb0b/FppMr89Qw4NFsKIKioqyM7OJiMjg0uXLgG1G8cFBwfTv39/7r333ia5Tn5+PgkJCURFRdGuXbsmOac7yc/PZ+XKlUyZMoW+ffve9vi84nLGrD2Iw2HHbDYbql+pKUmYCOGGrl27Vh8cKAlCeQAAA2dJREFUV65cQVVV/Pz86Nu3LyEhIU7/kL927RqLFy/m2WefJTg42KnX0oLD4WD9+vVYrVZeffVVLJafbsnfkvYdC/8nG7tSOzo0OjyIiQM6ubBafTB0B7wQelBWVkZWVhaZmZlcuVI7H6pFixb069ePSZMm0bZtW5fX1LJlSxITE4mPjycvL4/x48e7vAZnMplMvPLKK5w6dYoZM2YwY8YMevTo8aPHnv5iNxZLFzxNMs2gKciTiRBNoLS0lMzMTDIzMykpKQFqRx3169ePkJAQ/P3d74Nq69atFBQUMGvWLEN1zNexWq2sXLmSgIAApkyZctP3mJSUREVFBYNGhkufyW1IM5cQTnL16tX64KjbHqF169aEhITQr18/2rRpo3GFDZeWlsaWLVtYunQpvr6+WpfjFEeOHGHLli3MmzePSktL/nrwJEVfHSZ+0WytS9MFCRMhmsDly5fJzMwkKyuLa9euAdCmTRtCQkLo27cv99xzj8YVNt6FCxeIjY1lwYIFPPDAA1qX4xQVFRUsiFtFiqOPISdyOpP0mQhxhy5dukRGRgZZWVlUVFQA4O/vT0hICC+99JJhJ8Z16NCBlStXEhkZSdhj46hp3dFwzT5+fn4MfmIyf9v1JTWqqX5dPyN9j1qTMBGG92NzCYqKisjIyCA7O5vr168DtXvn9O/fn5dffpmWLZvXxkw+Pj68NCeSxxM/RzGVYLEYb6jsgC7+mM1mfExIh7sTSJgIQ8srLmfsuoPY7XbsdjtjzF/SSqkiICCA/v378+qrr+Ln56d1mW4hPf8qFg8PKmvsmA145163+ZZ0uDuHhIkwtLT8K6gqVNvBx8ODweGTZS7BTxjQxR9FwdArcsu6fs4jYSIMrTl8QDYVuXMXjSFhIgxNPiDvjNy5i7slYSIMTz4ghXA+3e20KIQQwv1ImAghhGg0CRMhhBCNJmEihBCi0SRMhBBCNJqEiRBCiEaTMBFCCNFoEiZCCCEaTcJECCFEo0mYCCGEaDQJEyGEEI0mYSKEEKLRJEyEEEI0mqKqasMPVpRi4J/OK0cIIYSb6ayqasDtDrqjMBFCCCF+jDRzCSGEaDQJEyGEEI0mYSKEEKLRJEyEEEI0moSJEEKIRpMwEUII0WgSJkIIIRpNwkQIIUSjSZgIIYRotP8PLiXOf4reJR4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 504x504 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"draw_edges(solve(points, 3))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b5180deb-4cc3-41f2-a440-e04f787b93df",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}