Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RIOT
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cm-projects
RIOT
Commits
a44a313e
Commit
a44a313e
authored
7 years ago
by
Mathias Tausig
Browse files
Options
Downloads
Patches
Plain Diff
hashes:sha3: Import Keccak code from Keccak Code Package
parent
ddb81273
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
sys/hashes/sha3.c
+333
-0
333 additions, 0 deletions
sys/hashes/sha3.c
with
333 additions
and
0 deletions
sys/hashes/sha3.c
0 → 100644
+
333
−
0
View file @
a44a313e
/*
Implementation by the Keccak, Keyak and Ketje Teams, namely, Guido Bertoni,
Joan Daemen, Michaël Peeters, Gilles Van Assche and Ronny Van Keer, hereby
denoted as "the implementer".
For more information, feedback or questions, please refer to our websites:
http://keccak.noekeon.org/
http://keyak.noekeon.org/
http://ketje.noekeon.org/
To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/
*/
/*
================================================================
The purpose of this source file is to demonstrate a readable and compact
implementation of all the Keccak instances approved in the FIPS 202 standard,
including the hash functions and the extendable-output functions (XOFs).
We focused on clarity and on source-code compactness,
rather than on the performance.
The advantages of this implementation are:
+ The source code is compact, after removing the comments, that is. :-)
+ There are no tables with arbitrary constants.
+ For clarity, the comments link the operations to the specifications using
the same notation as much as possible.
+ There is no restriction in cryptographic features. In particular,
the SHAKE128 and SHAKE256 XOFs can produce any output length.
+ The code does not use much RAM, as all operations are done in place.
The drawbacks of this implementation are:
- There is no message queue. The whole message must be ready in a buffer.
- It is not optimized for peformance.
The implementation is even simpler on a little endian platform. Just define the
LITTLE_ENDIAN symbol in that case.
For a more complete set of implementations, please refer to
the Keccak Code Package at https://github.com/gvanas/KeccakCodePackage
For more information, please refer to:
* [Keccak Reference] http://keccak.noekeon.org/Keccak-reference-3.0.pdf
* [Keccak Specifications Summary] http://keccak.noekeon.org/specs_summary.html
This file uses UTF-8 encoding, as some comments use Greek letters.
================================================================
*/
/**
* Function to compute the Keccak[r, c] sponge function over a given input.
* @param rate The value of the rate r.
* @param capacity The value of the capacity c.
* @param input Pointer to the input message.
* @param inputByteLen The number of input bytes provided in the input message.
* @param delimitedSuffix Bits that will be automatically appended to the end
* of the input message, as in domain separation.
* This is a byte containing from 0 to 7 bits
* These <i>n</i> bits must be in the least significant bit positions
* and must be delimited with a bit 1 at position <i>n</i>
* (counting from 0=LSB to 7=MSB) and followed by bits 0
* from position <i>n</i>+1 to position 7.
* Some examples:
* - If no bits are to be appended, then @a delimitedSuffix must be 0x01.
* - If the 2-bit sequence 0,1 is to be appended (as for SHA3-*), @a delimitedSuffix must be 0x06.
* - If the 4-bit sequence 1,1,1,1 is to be appended (as for SHAKE*), @a delimitedSuffix must be 0x1F.
* - If the 7-bit sequence 1,1,0,1,0,0,0 is to be absorbed, @a delimitedSuffix must be 0x8B.
* @param output Pointer to the buffer where to store the output.
* @param outputByteLen The number of output bytes desired.
* @pre One must have r+c=1600 and the rate a multiple of 8 bits in this implementation.
*/
void
Keccak
(
unsigned
int
rate
,
unsigned
int
capacity
,
const
unsigned
char
*
input
,
unsigned
long
long
int
inputByteLen
,
unsigned
char
delimitedSuffix
,
unsigned
char
*
output
,
unsigned
long
long
int
outputByteLen
);
/**
* Function to compute SHAKE128 on the input message with any output length.
*/
void
FIPS202_SHAKE128
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
,
int
outputByteLen
)
{
Keccak
(
1344
,
256
,
input
,
inputByteLen
,
0x1F
,
output
,
outputByteLen
);
}
/**
* Function to compute SHAKE256 on the input message with any output length.
*/
void
FIPS202_SHAKE256
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
,
int
outputByteLen
)
{
Keccak
(
1088
,
512
,
input
,
inputByteLen
,
0x1F
,
output
,
outputByteLen
);
}
/**
* Function to compute SHA3-224 on the input message. The output length is fixed to 28 bytes.
*/
void
FIPS202_SHA3_224
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
)
{
Keccak
(
1152
,
448
,
input
,
inputByteLen
,
0x06
,
output
,
28
);
}
/**
* Function to compute SHA3-256 on the input message. The output length is fixed to 32 bytes.
*/
void
FIPS202_SHA3_256
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
)
{
Keccak
(
1088
,
512
,
input
,
inputByteLen
,
0x06
,
output
,
32
);
}
/**
* Function to compute SHA3-384 on the input message. The output length is fixed to 48 bytes.
*/
void
FIPS202_SHA3_384
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
)
{
Keccak
(
832
,
768
,
input
,
inputByteLen
,
0x06
,
output
,
48
);
}
/**
* Function to compute SHA3-512 on the input message. The output length is fixed to 64 bytes.
*/
void
FIPS202_SHA3_512
(
const
unsigned
char
*
input
,
unsigned
int
inputByteLen
,
unsigned
char
*
output
)
{
Keccak
(
576
,
1024
,
input
,
inputByteLen
,
0x06
,
output
,
64
);
}
/*
================================================================
Technicalities
================================================================
*/
typedef
unsigned
char
UINT8
;
typedef
unsigned
long
long
int
UINT64
;
typedef
UINT64
tKeccakLane
;
#ifndef LITTLE_ENDIAN
/** Function to load a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static
UINT64
load64
(
const
UINT8
*
x
)
{
int
i
;
UINT64
u
=
0
;
for
(
i
=
7
;
i
>=
0
;
--
i
)
{
u
<<=
8
;
u
|=
x
[
i
];
}
return
u
;
}
/** Function to store a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static
void
store64
(
UINT8
*
x
,
UINT64
u
)
{
unsigned
int
i
;
for
(
i
=
0
;
i
<
8
;
++
i
)
{
x
[
i
]
=
u
;
u
>>=
8
;
}
}
/** Function to XOR into a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static
void
xor64
(
UINT8
*
x
,
UINT64
u
)
{
unsigned
int
i
;
for
(
i
=
0
;
i
<
8
;
++
i
)
{
x
[
i
]
^=
u
;
u
>>=
8
;
}
}
#endif
/*
================================================================
A readable and compact implementation of the Keccak-f[1600] permutation.
================================================================
*/
#define ROL64(a, offset) ((((UINT64)a) << offset) ^ (((UINT64)a) >> (64-offset)))
#define i(x, y) ((x)+5*(y))
#ifdef LITTLE_ENDIAN
#define readLane(x, y) (((tKeccakLane*)state)[i(x, y)])
#define writeLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) = (lane)
#define XORLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) ^= (lane)
#else
#define readLane(x, y) load64((UINT8*)state+sizeof(tKeccakLane)*i(x, y))
#define writeLane(x, y, lane) store64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
#define XORLane(x, y, lane) xor64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
#endif
/**
* Function that computes the linear feedback shift register (LFSR) used to
* define the round constants (see [Keccak Reference, Section 1.2]).
*/
int
LFSR86540
(
UINT8
*
LFSR
)
{
int
result
=
((
*
LFSR
)
&
0x01
)
!=
0
;
if
(((
*
LFSR
)
&
0x80
)
!=
0
)
/* Primitive polynomial over GF(2): x^8+x^6+x^5+x^4+1 */
(
*
LFSR
)
=
((
*
LFSR
)
<<
1
)
^
0x71
;
else
(
*
LFSR
)
<<=
1
;
return
result
;
}
/**
* Function that computes the Keccak-f[1600] permutation on the given state.
*/
void
KeccakF1600_StatePermute
(
void
*
state
)
{
unsigned
int
round
,
x
,
y
,
j
,
t
;
UINT8
LFSRstate
=
0x01
;
for
(
round
=
0
;
round
<
24
;
round
++
)
{
{
/* === θ step (see [Keccak Reference, Section 2.3.2]) === */
tKeccakLane
C
[
5
],
D
;
/* Compute the parity of the columns */
for
(
x
=
0
;
x
<
5
;
x
++
)
C
[
x
]
=
readLane
(
x
,
0
)
^
readLane
(
x
,
1
)
^
readLane
(
x
,
2
)
^
readLane
(
x
,
3
)
^
readLane
(
x
,
4
);
for
(
x
=
0
;
x
<
5
;
x
++
)
{
/* Compute the θ effect for a given column */
D
=
C
[(
x
+
4
)
%
5
]
^
ROL64
(
C
[(
x
+
1
)
%
5
],
1
);
/* Add the θ effect to the whole column */
for
(
y
=
0
;
y
<
5
;
y
++
)
XORLane
(
x
,
y
,
D
);
}
}
{
/* === ρ and π steps (see [Keccak Reference, Sections 2.3.3 and 2.3.4]) === */
tKeccakLane
current
,
temp
;
/* Start at coordinates (1 0) */
x
=
1
;
y
=
0
;
current
=
readLane
(
x
,
y
);
/* Iterate over ((0 1)(2 3))^t * (1 0) for 0 ≤ t ≤ 23 */
for
(
t
=
0
;
t
<
24
;
t
++
)
{
/* Compute the rotation constant r = (t+1)(t+2)/2 */
unsigned
int
r
=
((
t
+
1
)
*
(
t
+
2
)
/
2
)
%
64
;
/* Compute ((0 1)(2 3)) * (x y) */
unsigned
int
Y
=
(
2
*
x
+
3
*
y
)
%
5
;
x
=
y
;
y
=
Y
;
/* Swap current and state(x,y), and rotate */
temp
=
readLane
(
x
,
y
);
writeLane
(
x
,
y
,
ROL64
(
current
,
r
));
current
=
temp
;
}
}
{
/* === χ step (see [Keccak Reference, Section 2.3.1]) === */
tKeccakLane
temp
[
5
];
for
(
y
=
0
;
y
<
5
;
y
++
)
{
/* Take a copy of the plane */
for
(
x
=
0
;
x
<
5
;
x
++
)
temp
[
x
]
=
readLane
(
x
,
y
);
/* Compute χ on the plane */
for
(
x
=
0
;
x
<
5
;
x
++
)
writeLane
(
x
,
y
,
temp
[
x
]
^
((
~
temp
[(
x
+
1
)
%
5
])
&
temp
[(
x
+
2
)
%
5
]));
}
}
{
/* === ι step (see [Keccak Reference, Section 2.3.5]) === */
for
(
j
=
0
;
j
<
7
;
j
++
)
{
unsigned
int
bitPosition
=
(
1
<<
j
)
-
1
;
/* 2^j-1 */
if
(
LFSR86540
(
&
LFSRstate
))
XORLane
(
0
,
0
,
(
tKeccakLane
)
1
<<
bitPosition
);
}
}
}
}
/*
================================================================
A readable and compact implementation of the Keccak sponge functions
that use the Keccak-f[1600] permutation.
================================================================
*/
#include
<string.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
void
Keccak
(
unsigned
int
rate
,
unsigned
int
capacity
,
const
unsigned
char
*
input
,
unsigned
long
long
int
inputByteLen
,
unsigned
char
delimitedSuffix
,
unsigned
char
*
output
,
unsigned
long
long
int
outputByteLen
)
{
UINT8
state
[
200
];
unsigned
int
rateInBytes
=
rate
/
8
;
unsigned
int
blockSize
=
0
;
unsigned
int
i
;
if
(((
rate
+
capacity
)
!=
1600
)
||
((
rate
%
8
)
!=
0
))
return
;
/* === Initialize the state === */
memset
(
state
,
0
,
sizeof
(
state
));
/* === Absorb all the input blocks === */
while
(
inputByteLen
>
0
)
{
blockSize
=
MIN
(
inputByteLen
,
rateInBytes
);
for
(
i
=
0
;
i
<
blockSize
;
i
++
)
state
[
i
]
^=
input
[
i
];
input
+=
blockSize
;
inputByteLen
-=
blockSize
;
if
(
blockSize
==
rateInBytes
)
{
KeccakF1600_StatePermute
(
state
);
blockSize
=
0
;
}
}
/* === Do the padding and switch to the squeezing phase === */
/* Absorb the last few bits and add the first bit of padding (which coincides with the delimiter in delimitedSuffix) */
state
[
blockSize
]
^=
delimitedSuffix
;
/* If the first bit of padding is at position rate-1, we need a whole new block for the second bit of padding */
if
(((
delimitedSuffix
&
0x80
)
!=
0
)
&&
(
blockSize
==
(
rateInBytes
-
1
)))
KeccakF1600_StatePermute
(
state
);
/* Add the second bit of padding */
state
[
rateInBytes
-
1
]
^=
0x80
;
/* Switch to the squeezing phase */
KeccakF1600_StatePermute
(
state
);
/* === Squeeze out all the output blocks === */
while
(
outputByteLen
>
0
)
{
blockSize
=
MIN
(
outputByteLen
,
rateInBytes
);
memcpy
(
output
,
state
,
blockSize
);
output
+=
blockSize
;
outputByteLen
-=
blockSize
;
if
(
outputByteLen
>
0
)
KeccakF1600_StatePermute
(
state
);
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment