Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <cassert>
#include <cstdint>
#include <new>
#include <boost/utility.hpp>
namespace memory {
// Memory allocation strategy
//
// The chief requirement is to be able to deduce the object size.
//
// Small object (< page size) are stored in pages. The beginning of the page
// contains a header with a pointer to a pool, consisting of all free objects
// of that size. Small objects are recognized by free() by the fact that
// they are not aligned on a page boundary (since that is occupied by the
// header). The pool maintains a singly linked list of free objects, and adds
// or frees pages as needed.
//
// Large objects are rounded up to page size. They have a page-sized header
// in front that contains the page size. The free list (free_page_ranges)
// is an rbtree sorted by address. Allocation strategy is first-fit.
//
// Objects that are exactly page sized, and allocated by alloc_page(), come
// from the same pool as large objects, except they don't have a header
// (since we know the size already).
pool::pool(unsigned size)
: _size(size)
, _free()
{
assert(size + sizeof(page_header) <= page_size);
}
pool::~pool()
{
assert(!_free);
}
const size_t pool::max_object_size = page_size - sizeof(pool::page_header);
pool::page_header* pool::to_header(free_object* object)
{
return reinterpret_cast<page_header*>(
reinterpret_cast<std::uintptr_t>(object) & ~(page_size - 1));
}
void* pool::alloc()
{
if (!_free) {
add_page();
}
auto obj = _free;
++to_header(obj)->nalloc;
_free = obj->next;
return obj;
}
void pool::add_page()
{
void* page = alloc_page();
auto header = static_cast<page_header*>(page);
header->owner = this;
header->nalloc = 0;
for (auto p = page + page_size - _size; p >= header + 1; p -= _size) {
auto obj = static_cast<free_object*>(p);
obj->next = _free;
_free = obj;
}
}
void pool::free(void* object)
{
auto obj = static_cast<free_object*>(object);
auto header = to_header(obj);
if (!--header->nalloc) {
// FIXME: add hysteresis
free_page(header);
} else {
obj->next = _free;
_free = obj;
}
}
pool* pool::from_object(void* object)
{
auto header = to_header(static_cast<free_object*>(object));
return header->owner;
}
malloc_pool malloc_pools[ilog2_roundup_constexpr(page_size)]
__attribute__((init_priority(12000)));
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
malloc_pool::malloc_pool()
: pool(compute_object_size(this - malloc_pools))
{
}
size_t malloc_pool::compute_object_size(unsigned pos)
{
size_t size = 1 << pos;
if (size > max_object_size) {
size = max_object_size;
}
return size;
}
page_range::page_range(size_t _size)
: size(_size)
{
}
struct addr_cmp {
bool operator()(const page_range& fpr1, const page_range& fpr2) const {
return &fpr1 < &fpr2;
}
};
namespace bi = boost::intrusive;
bi::set<page_range,
bi::compare<addr_cmp>,
bi::member_hook<page_range,
bi::set_member_hook<>,
&page_range::member_hook>
> free_page_ranges __attribute__((init_priority(12000)));
void* malloc_large(size_t size)
{
size = (size + page_size - 1) & ~(page_size - 1);
size += page_size;
for (auto i = free_page_ranges.begin(); i != free_page_ranges.end(); ++i) {
auto header = &*i;
page_range* ret_header;
if (header->size >= size) {
if (header->size == size) {
free_page_ranges.erase(i);
ret_header = header;
} else {
void *v = header;
header->size -= size;
ret_header = new (v + header->size) page_range(size);
}
void* obj = ret_header;
obj += page_size;
return obj;
}
}
abort();
}
page_range* merge(page_range* a, page_range* b)
{
void* va = a;
void* vb = b;
if (va + a->size == vb) {
a->size += b->size;
free_page_ranges.erase(*b);
return a;
} else {
return b;
}
}
void free_large(void* obj)
{
obj -= page_size;
auto header = static_cast<page_range*>(obj);
auto i = free_page_ranges.insert(*header).first;
if (i != free_page_ranges.begin()) {
i = free_page_ranges.iterator_to(*merge(&*boost::prior(i), &*i));
}
if (boost::next(i) != free_page_ranges.end()) {
merge(&*i, &*boost::next(i));
}
}
void* alloc_page()
{
assert(!free_page_ranges.empty());
auto p = &*free_page_ranges.begin();
if (p->size == page_size) {
free_page_ranges.erase(*p);
return p;
} else {
p->size -= page_size;
void* v = p;
v += p->size;
return v;
}
}
void free_page(void* v)
{
new (v) page_range(page_size);
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
free_large(v + page_size);
}
char initial_malloc_pool[1 << 26] __attribute__((aligned(4096)));
void __attribute__((constructor(12001))) setup()
{
auto size = sizeof(initial_malloc_pool);
auto header = new (initial_malloc_pool) page_range(size);
void* v = header;
free_large(v + page_size);
}
}
unsigned ilog2_roundup(size_t n)
{
// FIXME: optimize
unsigned i = 0;
while (n > (size_t(1) << i)) {
++i;
}
return i;
}
extern "C" {
void* malloc(size_t size);
void free(void* object);
}
// malloc_large returns a page-aligned object as a marker that it is not
// allocated from a pool.
// FIXME: be less wasteful
void* malloc(size_t size)
{
if (size == 0) {
size = 1;
}
if (size <= memory::pool::max_object_size) {
unsigned n = ilog2_roundup(size);
return memory::malloc_pools[n].alloc();
} else {
return memory::malloc_large(size);
}
}
void free(void* object)
{
if (reinterpret_cast<uintptr_t>(object) & (memory::page_size - 1)) {
return memory::pool::from_object(object)->free(object);
} else {
return memory::free_large(object);
}
}