Newer
Older
#include "dw1000_hal.h"
#include "FreeRTOS.h"
#include "task.h"
#include "cmsis_os.h"
#include "stm32f4xx_hal.h"
#include "Trace.h"
#include "deca_regs.h"
#include "spi.h"
SPI_HandleTypeDef *hspi;
uint8_t read3[7];
static void (*spiCallback)(int state, void *data, uint16_t len);
static void *spiCallbackData;
static SemaphoreHandle_t spiSema = NULL; //semaphore for SPI access
void dw1000Hal_reset(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/*Configure GPIO pin : PD7 */
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_LOW;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET);
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
void dw1000Hal_chipSelect(void)
{
HAL_GPIO_WritePin(DW1000HAL_SS_GPIO, DW1000HAL_SS_PIN, GPIO_PIN_RESET);
}
void dw1000Hal_chipDeselect(void)
{
HAL_GPIO_WritePin(DW1000HAL_SS_GPIO, DW1000HAL_SS_PIN, GPIO_PIN_SET);
}
int dw1000Hal_readSubRegister(uint8_t regID, uint16_t offset, uint8_t *dest, uint16_t len)
{
uint8_t dummy[3];
int ret;
portENTER_CRITICAL();
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
if (len <= 127) {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0x40; // subregister offset follows in second byte
dummy[1] = offset & 0x7f; // set first bit 0 ( no third byte present)
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 2, DW1000HAL_SPI_TIMEOUT);
} else {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0x40; // subregister offset follows in second byte
dummy[1] = 0x80 | (offset & 0x7f); // set first bit 1 ( third byte present)
dummy[2] = offset >> 7;
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 3, DW1000HAL_SPI_TIMEOUT);
}
if (ret == HAL_OK) {
ret = HAL_SPI_Receive(hspi, dest, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY);
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
portEXIT_CRITICAL();
return ret;
}
int dw1000Hal_writeSubRegister(uint8_t regID, uint16_t offset, uint8_t *src, uint16_t len)
{
uint8_t dummy[3];
int ret;
portENTER_CRITICAL();
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
if (len <= 127) {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0xC0; //write access, subregister offset follows in second byte
dummy[1] = offset & 0x7f; // set first bit 0 ( no third byte present)
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 2, DW1000HAL_SPI_TIMEOUT);
} else {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0xC0; //write access, subregister offset follows in second byte
dummy[1] = 0x80 | (offset & 0x7f); // set first bit 1 ( third byte present)
dummy[2] = offset >> 7;
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 3, DW1000HAL_SPI_TIMEOUT);
}
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit(hspi, src, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY);
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
portEXIT_CRITICAL();
return ret;
}
int dw1000Hal_readRegister(uint8_t regID, uint8_t *dest, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
int ret;
portENTER_CRITICAL();
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, 10) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Receive(hspi, dest, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
portEXIT_CRITICAL();
int dw1000Hal_readRegisterFromIsr(uint8_t regID, uint8_t *dest, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
int ret;
if ((spiSema != NULL) && (xSemaphoreTakeFromISR(spiSema, pdFALSE) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Receive(hspi, dest, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGiveFromISR(spiSema,pdFALSE);
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_writeRegister(uint8_t regID, uint8_t *src, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy |= 0x80; //set first byte 1 (write access)
int ret;
portENTER_CRITICAL();
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, 10) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit(hspi, src, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
portEXIT_CRITICAL();
return ret;
}
int dw1000Hal_writeRegisterFromIsr(uint8_t regID, uint8_t *src, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy |= 0x80; //set first byte 1 (write access)
int ret;
if ((spiSema != NULL) && (xSemaphoreTakeFromISR(spiSema, pdFALSE) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit(hspi, src, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGiveFromISR(spiSema,pdFALSE);
} else {
ret = HAL_LOCKED;
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
}
return ret;
}
int dw1000Hal_readDmaRegister(uint8_t regID, uint8_t *dest, uint16_t len, void (*callback)(int state, void *data, uint16_t len))
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
spiCallback = callback;
spiCallbackData = dest;
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Receive_DMA(hspi, dest, len);
} else {
xSemaphoreGive(spiSema);
dw1000Hal_chipDeselect();
}
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_writeDmaRegister(uint8_t regID, uint8_t *src, uint16_t len, void (*callback)(int state, void *data, uint16_t len))
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy |= 0x80; //set first byte 1 (write access)
spiCallback = callback;
spiCallbackData = src;
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit_DMA(hspi, src, len);
} else {
xSemaphoreGive(spiSema);
dw1000Hal_chipDeselect();
}
} else {
ret = HAL_LOCKED;
}
return ret;
}
void vTaskDW1000HAL(void *pvParameters)
{
hspi = &hspi1;
spiSema = xSemaphoreCreateMutex(); //creating semaphore for SPI access
//Configure the dw1000
dw1000Hal_reset();
uint32_t sys_mask = 0;
dw1000Hal_readRegister(SYS_MASK_ID,&sys_mask,SYS_MASK_LEN);
sys_mask |= ( SYS_MASK_MTXFRS | SYS_MASK_MRXDFR | SYS_MASK_MCPLLLL); /* Mask transmit frame sent event *//* Mask receiver data frame ready event */
//trace_printf("sys_mask %x\n",sys_mask);
dw1000Hal_writeRegister(SYS_MASK_ID,&sys_mask,SYS_MASK_LEN);
//set TX LED
dw1000Hal_writeSubRegister(GPIO_CTRL_ID,GPIO_MODE_OFFSET,(uint8_t*)&gpio,GPIO_MODE_LEN);
uint32_t led = 0;
dw1000Hal_readSubRegister(PMSC_ID,PMSC_CTRL0_OFFSET,(uint8_t*)&led,PMSC_CTRL0_LEN);
led |= (1<<18) | (1<<23); // Preparing LEDs for blink mode
dw1000Hal_writeSubRegister(PMSC_ID,PMSC_CTRL0_OFFSET,(uint8_t*)&led,PMSC_CTRL0_LEN);
dw1000Hal_readSubRegister(PMSC_ID,PMSC_LEDC_OFFSET,(uint8_t*)&led,PMSC_LEDC_LEN);
led |= PMSC_LEDC_BLNKEN; // enable blink mode
//led |= 0xF0000; // force leds to blink once
dw1000Hal_writeSubRegister(PMSC_ID,PMSC_LEDC_OFFSET,(uint8_t*)&led,PMSC_LEDC_LEN);
//led &= ~0xF0000; // reset froce blink bits. needed to make the leds blinking
//dw1000Hal_writeSubRegister(PMSC_ID,PMSC_LEDC_OFFSET,(uint8_t*)&led,PMSC_LEDC_LEN);
//uint8_t event_clear[SYS_STATUS_LEN];
//memset(event_clear, 0xff, SYS_STATUS_LEN);
//dw1000Hal_writeRegister(SYS_STATUS_ID, &event_clear, SYS_STATUS_LEN);
uint32_t sys_ctrl = 0;
dw1000Hal_readRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN); // switch to rx mode
sys_ctrl |= SYS_CTRL_RXENAB;
dw1000Hal_writeRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN);
uint8_t led_values = 0;
TickType_t xNextWakeTime;
xNextWakeTime = xTaskGetTickCount();
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
}
vTaskDelete( NULL );
}
/***********************************************************
* Callback functions
*/
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
uint64_t event = 0;
uint64_t event_clear = 0;
dw1000Hal_readRegisterFromIsr(SYS_STATUS_ID, (uint8_t*)&event, SYS_STATUS_LEN);
if (event & SYS_STATUS_TXFRS){ // Frame sent
event_clear |= SYS_STATUS_TXFRS ; //clear interrupt
//trace_printf("sent\n");
uint32_t sys_ctrl = 0;
dw1000Hal_readRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN); // switch to rx mode
sys_ctrl |= SYS_CTRL_RXENAB;
dw1000Hal_writeRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN);
xHigherPriorityTaskWoken = pdFALSE;
xTaskNotifyFromISR( xHandleTestApp, 0x50, eSetValueWithOverwrite, &xHigherPriorityTaskWoken);
if (event & SYS_STATUS_RXDFR){ // Frame received
event_clear |= SYS_STATUS_RXDFR; //clear interrupt
uint32_t sys_ctrl = 0;
dw1000Hal_readRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN); // switch to rx mode
sys_ctrl |= SYS_CTRL_RXENAB;
dw1000Hal_writeRegisterFromIsr(SYS_CTRL_ID, (uint8_t*)&sys_ctrl, SYS_CTRL_LEN);
}
if (event & SYS_STATUS_CLKPLL_LL){ // Frame sent
event_clear |= SYS_STATUS_CLKPLL_LL;
if (event & SYS_STATUS_CPLOCK){
event_clear |= SYS_STATUS_CPLOCK;
//trace_printf("fuu\n");
dw1000Hal_writeRegisterFromIsr(SYS_STATUS_ID, (uint8_t*)&event_clear, SYS_STATUS_LEN);