Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include "dw1000_hal.h"
#include "FreeRTOS.h"
#include "task.h"
#include "cmsis_os.h"
#include "stm32f4xx_hal.h"
#include "Trace.h"
#include "deca_regs.h"
#include "spi.h"
SPI_HandleTypeDef *hspi;
uint8_t read3[7];
static void (*spiCallback)(int state, void *data, uint16_t len);
static void *spiCallbackData;
static SemaphoreHandle_t spiSema = NULL; //semaphore for SPI access
void dw1000Hal_chipSelect(void)
{
HAL_GPIO_WritePin(DW1000HAL_SS_GPIO, DW1000HAL_SS_PIN, GPIO_PIN_RESET);
}
void dw1000Hal_chipDeselect(void)
{
HAL_GPIO_WritePin(DW1000HAL_SS_GPIO, DW1000HAL_SS_PIN, GPIO_PIN_SET);
}
int dw1000Hal_readSubRegister(uint8_t regID, uint16_t offset, uint8_t *dest, uint16_t len)
{
uint8_t dummy[3];
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
if (len <= 127) {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0x40; // subregister offset follows in second byte
dummy[1] = offset & 0x7f; // set first bit 0 ( no third byte present)
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 2, DW1000HAL_SPI_TIMEOUT);
} else {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0x40; // subregister offset follows in second byte
dummy[1] = 0x80 | (offset & 0x7f); // set first bit 1 ( third byte present)
dummy[2] = offset >> 7;
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 3, DW1000HAL_SPI_TIMEOUT);
}
if (ret == HAL_OK) {
ret = HAL_SPI_Receive(hspi, dest, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY);
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_writeSubRegister(uint8_t regID, uint16_t offset, uint8_t *src, uint16_t len)
{
uint8_t dummy[3];
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
if (len <= 127) {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0xC0; //write access, subregister offset follows in second byte
dummy[1] = offset & 0x7f; // set first bit 0 ( no third byte present)
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 2, DW1000HAL_SPI_TIMEOUT);
} else {
dummy[0] = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy[0] |= 0xC0; //write access, subregister offset follows in second byte
dummy[1] = 0x80 | (offset & 0x7f); // set first bit 1 ( third byte present)
dummy[2] = offset >> 7;
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, dummy, 3, DW1000HAL_SPI_TIMEOUT);
}
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit(hspi, src, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY);
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_readRegister(uint8_t regID, uint8_t *dest, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Receive(hspi, dest, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_writeRegister(uint8_t regID, uint8_t *src, uint16_t len)
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy |= 0x80; //set first byte 1 (write access)
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit(hspi, src, len, DW1000HAL_SPI_TIMEOUT);
}
dw1000Hal_chipDeselect();
while (hspi->State != HAL_SPI_STATE_READY) {
}
xSemaphoreGive(spiSema);
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_readDmaRegister(uint8_t regID, uint8_t *dest, uint16_t len, void (*callback)(int state, void *data, uint16_t len))
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
spiCallback = callback;
spiCallbackData = dest;
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Receive_DMA(hspi, dest, len);
} else {
xSemaphoreGive(spiSema);
dw1000Hal_chipDeselect();
}
} else {
ret = HAL_LOCKED;
}
return ret;
}
int dw1000Hal_writeDmaRegister(uint8_t regID, uint8_t *src, uint16_t len, void (*callback)(int state, void *data, uint16_t len))
{
uint8_t dummy;
dummy = regID & 0x3f; //set the first two bit 0 (read access, no subregister)
dummy |= 0x80; //set first byte 1 (write access)
spiCallback = callback;
spiCallbackData = src;
int ret;
if ((spiSema != NULL) && (xSemaphoreTake(spiSema, ( TickType_t ) DW1000HAL_SPI_TIMEOUT) == pdTRUE)) {
dw1000Hal_chipSelect();
ret = HAL_SPI_Transmit(hspi, &dummy, 1, DW1000HAL_SPI_TIMEOUT);
if (ret == HAL_OK) {
ret = HAL_SPI_Transmit_DMA(hspi, src, len);
} else {
xSemaphoreGive(spiSema);
dw1000Hal_chipDeselect();
}
} else {
ret = HAL_LOCKED;
}
return ret;
}
void vTaskDW1000HAL(void *pvParameters)
{
hspi = &hspi1;
spiSema = xSemaphoreCreateMutex(); //creating semaphore for SPI access
TickType_t xNextWakeTime;
xNextWakeTime = xTaskGetTickCount();
// all LED GPIOs as output
uint8_t gpio_dir = 0xF0;
dw1000Hal_writeSubRegister(GPIO_CTRL_ID, GPIO_DIR_OFFSET, &gpio_dir, 1);
// turn on all 4 LEDs
uint8_t gpio_dout = 0xFF;
dw1000Hal_writeSubRegister(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, &gpio_dout, 1);
uint8_t led_values = 0;
while(1){
vTaskDelayUntil(&xNextWakeTime, 1000/portTICK_PERIOD_MS);
HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_15);
// count in binary on LEDs
gpio_dout = led_values | 0xF0;
dw1000Hal_writeSubRegister(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, &gpio_dout, 1);
led_values += 1;
if (led_values > 15) {
led_values = 0;
}
}
vTaskDelete( NULL );
}
/***********************************************************
* Callback functions
*/
void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
dw1000Hal_chipDeselect();
xSemaphoreGiveFromISR(spiSema, pdFALSE);
if (spiCallback != NULL){
spiCallback(HAL_ERROR, 0, hspi->TxXferSize);
}
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
}