Newer
Older
#include <cassert>
#include <cstdint>
#include <new>
#include <boost/utility.hpp>
// Memory allocation strategy
//
// The chief requirement is to be able to deduce the object size.
//
// Small object (< page size) are stored in pages. The beginning of the page
// contains a header with a pointer to a pool, consisting of all free objects
// of that size. Small objects are recognized by free() by the fact that
// they are not aligned on a page boundary (since that is occupied by the
// header). The pool maintains a singly linked list of free objects, and adds
// or frees pages as needed.
//
// Large objects are rounded up to page size. They have a page-sized header
// in front that contains the page size. The free list (free_page_ranges)
// is an rbtree sorted by address. Allocation strategy is first-fit.
//
// Objects that are exactly page sized, and allocated by alloc_page(), come
// from the same pool as large objects, except they don't have a header
// (since we know the size already).
pool::pool(unsigned size)
: _size(size)
, _free()
{
assert(size + sizeof(page_header) <= page_size);
}
pool::~pool()
{
assert(_free.empty());
}
const size_t pool::max_object_size = page_size - sizeof(pool::page_header);
const size_t pool::min_object_size = sizeof(pool::free_object);
pool::page_header* pool::to_header(free_object* object)
{
return reinterpret_cast<page_header*>(
reinterpret_cast<std::uintptr_t>(object) & ~(page_size - 1));
}
void* pool::alloc()
{
auto header = _free.begin();
auto obj = header->local_free;
++header->nalloc;
header->local_free = obj->next;
if (!header->local_free) {
_free.erase(header);
}
unsigned pool::get_size()
{
return _size;
}
void pool::add_page()
{
void* page = alloc_page();
auto header = new (page) page_header;
header->owner = this;
header->nalloc = 0;
header->local_free = nullptr;
for (auto p = page + page_size - _size; p >= header + 1; p -= _size) {
auto obj = static_cast<free_object*>(p);
obj->next = header->local_free;
header->local_free = obj;
_free.push_back(*header);
}
void pool::free(void* object)
{
auto obj = static_cast<free_object*>(object);
auto header = to_header(obj);
if (!--header->nalloc) {
if (header->local_free) {
_free.erase(_free.iterator_to(*header));
}
// FIXME: add hysteresis
free_page(header);
} else {
if (!header->local_free) {
_free.push_front(*header);
}
obj->next = header->local_free;
header->local_free = obj;
}
}
pool* pool::from_object(void* object)
{
auto header = to_header(static_cast<free_object*>(object));
return header->owner;
}
malloc_pool malloc_pools[ilog2_roundup_constexpr(page_size) + 1]
__attribute__((init_priority(12000)));
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
malloc_pool::malloc_pool()
: pool(compute_object_size(this - malloc_pools))
{
}
size_t malloc_pool::compute_object_size(unsigned pos)
{
size_t size = 1 << pos;
if (size > max_object_size) {
size = max_object_size;
}
return size;
}
page_range::page_range(size_t _size)
: size(_size)
{
}
struct addr_cmp {
bool operator()(const page_range& fpr1, const page_range& fpr2) const {
return &fpr1 < &fpr2;
}
};
namespace bi = boost::intrusive;
bi::set<page_range,
bi::compare<addr_cmp>,
bi::member_hook<page_range,
bi::set_member_hook<>,
&page_range::member_hook>
> free_page_ranges __attribute__((init_priority(12000)));
void* malloc_large(size_t size)
{
size = (size + page_size - 1) & ~(page_size - 1);
size += page_size;
for (auto i = free_page_ranges.begin(); i != free_page_ranges.end(); ++i) {
auto header = &*i;
page_range* ret_header;
if (header->size >= size) {
if (header->size == size) {
free_page_ranges.erase(i);
ret_header = header;
} else {
void *v = header;
header->size -= size;
ret_header = new (v + header->size) page_range(size);
}
void* obj = ret_header;
obj += page_size;
return obj;
}
}
abort();
}
page_range* merge(page_range* a, page_range* b)
{
void* va = a;
void* vb = b;
if (va + a->size == vb) {
a->size += b->size;
free_page_ranges.erase(*b);
return a;
} else {
return b;
}
}
void free_large(void* obj)
{
obj -= page_size;
auto header = static_cast<page_range*>(obj);
auto i = free_page_ranges.insert(*header).first;
if (i != free_page_ranges.begin()) {
i = free_page_ranges.iterator_to(*merge(&*boost::prior(i), &*i));
}
if (boost::next(i) != free_page_ranges.end()) {
merge(&*i, &*boost::next(i));
}
}
unsigned large_object_size(void *obj)
{
obj -= page_size;
auto header = static_cast<page_range*>(obj);
return header->size;
}
void* alloc_page()
{
assert(!free_page_ranges.empty());
auto p = &*free_page_ranges.begin();
if (p->size == page_size) {
free_page_ranges.erase(*p);
return p;
} else {
p->size -= page_size;
void* v = p;
v += p->size;
return v;
}
}
void free_page(void* v)
{
new (v) page_range(page_size);
free_large(v + page_size);
}
void free_initial_memory_range(void* addr, size_t size)
{
if (!size) {
return;
}
auto a = reinterpret_cast<uintptr_t>(addr);
auto delta = align_up(a, page_size) - a;
if (delta > size) {
return;
}
addr += delta;
size -= delta;
if (!size) {
return;
}
new (addr) page_range(size);
free_large(addr + page_size);
void __attribute__((constructor(12001))) setup()
{
}
}
unsigned ilog2_roundup(size_t n)
{
// FIXME: optimize
unsigned i = 0;
while (n > (size_t(1) << i)) {
++i;
}
return i;
}
extern "C" {
void* malloc(size_t size);
void free(void* object);
}
// malloc_large returns a page-aligned object as a marker that it is not
// allocated from a pool.
// FIXME: be less wasteful
void* malloc(size_t size)
{
if ((ssize_t)size < 0)
return libc_error_ptr<void *>(ENOMEM);
if (size <= memory::pool::max_object_size) {
size = std::max(size, memory::pool::min_object_size);
unsigned n = ilog2_roundup(size);
return memory::malloc_pools[n].alloc();
} else {
return memory::malloc_large(size);
}
}
void* calloc(size_t nmemb, size_t size)
{
// FIXME: check for overflow
auto n = nmemb * size;
auto p = malloc(n);
memset(p, 0, n);
return p;
}
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
static size_t object_size(void *object)
{
if (reinterpret_cast<uintptr_t>(object) & (memory::page_size - 1)) {
return memory::pool::from_object(object)->get_size();
} else {
return memory::large_object_size(object);
}
}
void* realloc(void* object, size_t size)
{
if (!object)
return malloc(size);
if (!size) {
free(object);
return NULL;
}
size_t old_size = object_size(object);
size_t copy_size = size > old_size ? old_size : size;
void* ptr = malloc(size);
if (ptr) {
memcpy(ptr, object, copy_size);
free(object);
}
return NULL;
}
if (reinterpret_cast<uintptr_t>(object) & (memory::page_size - 1)) {
return memory::pool::from_object(object)->free(object);
} else {
return memory::free_large(object);
}
}